Plasmid accumulation reduces life span in Saccharomyces cerevisiae. 2003

Alaric A Falcón, and John P Aris
Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610-0235, USA.

Aging in the yeast Saccharomyces cerevisiae is under the control of multiple pathways. The production and accumulation of extrachromosomal rDNA circles (ERCs) is one pathway that has been proposed to bring about aging in yeast. To test this proposal, we have developed a plasmid-based model system to study the role of DNA episomes in reduction of yeast life span. Recombinant plasmids containing different replication origins, cis-acting partitioning elements, and selectable marker genes were constructed and analyzed for their effects on yeast replicative life span. Plasmids containing the ARS1 replication origin reduce life span to the greatest extent of the plasmids analyzed. This reduction in life span is partially suppressed by a CEN4 centromeric element on ARS1 plasmids. Plasmids containing a replication origin from the endogenous yeast 2 mu circle also reduce life span, but to a lesser extent than ARS1 plasmids. Consistent with this, ARS1 and 2 mu origin plasmids accumulate in approximately 7-generation-old cells, but ARS1/CEN4 plasmids do not. Importantly, ARS1 plasmids accumulate to higher levels in old cells than 2 mu origin plasmids, suggesting a correlation between plasmid accumulation and life span reduction. Reduction in life span is neither an indirect effect of increased ERC levels nor the result of stochastic cessation of growth. The presence of a fully functional 9.1-kb rDNA repeat on plasmids is not required for, and does not augment, reduction in life span. These findings support the view that accumulation of DNA episomes, including episomes such as ERCs, cause cell senescence in yeast.

UI MeSH Term Description Entries
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D005819 Genetic Markers A phenotypically recognizable genetic trait which can be used to identify a genetic locus, a linkage group, or a recombination event. Chromosome Markers,DNA Markers,Markers, DNA,Markers, Genetic,Genetic Marker,Marker, Genetic,Chromosome Marker,DNA Marker,Marker, Chromosome,Marker, DNA,Markers, Chromosome
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D014170 Transformation, Genetic Change brought about to an organisms genetic composition by unidirectional transfer (TRANSFECTION; TRANSDUCTION, GENETIC; CONJUGATION, GENETIC, etc.) and incorporation of foreign DNA into prokaryotic or eukaryotic cells by recombination of part or all of that DNA into the cell's genome. Genetic Transformation,Genetic Transformations,Transformations, Genetic
D018628 Gene Dosage The number of copies of a given gene present in the cell of an organism. An increase in gene dosage (by GENE DUPLICATION for example) can result in higher levels of gene product formation. GENE DOSAGE COMPENSATION mechanisms result in adjustments to the level GENE EXPRESSION when there are changes or differences in gene dosage. Gene Copy Number,Copy Number, Gene,Copy Numbers, Gene,Dosage, Gene,Dosages, Gene,Gene Copy Numbers,Gene Dosages,Number, Gene Copy,Numbers, Gene Copy
D018741 Replication Origin A unique DNA sequence of a replicon at which DNA REPLICATION is initiated and proceeds bidirectionally or unidirectionally. It contains the sites where the first separation of the complementary strands occurs, a primer RNA is synthesized, and the switch from primer RNA to DNA synthesis takes place. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Origin of Replication,ori Region,Origin, Replication,Origins, Replication,Region, ori,Regions, ori,Replication Origins,ori Regions

Related Publications

Alaric A Falcón, and John P Aris
January 1980, Mechanisms of ageing and development,
Alaric A Falcón, and John P Aris
April 2003, Aging cell,
Alaric A Falcón, and John P Aris
January 2007, Methods in molecular biology (Clifton, N.J.),
Alaric A Falcón, and John P Aris
October 1999, Molecular biology of the cell,
Alaric A Falcón, and John P Aris
June 2014, Science (New York, N.Y.),
Alaric A Falcón, and John P Aris
January 1985, Antonie van Leeuwenhoek,
Alaric A Falcón, and John P Aris
January 2002, Molecular and cellular biology,
Alaric A Falcón, and John P Aris
January 1996, Biotechnology advances,
Alaric A Falcón, and John P Aris
June 1984, Journal of bacteriology,
Copied contents to your clipboard!