Overexpression of PKC-betaI and -delta contributes to higher PKC activity in the proximal tubules of old Fischer 344 rats. 2003

Mohammad Asghar, and Tahir Hussain, and Mustafa F Lokhandwala
Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, TX 77204, USA.

Previously, we reported that natriuretic and diuretic response to dopamine is diminished in old Fischer 344 rats, which is due to higher basal protein kinase C (PKC) activity and hyperphosphorylation of Na-K-ATPase in the proximal tubules (PTs) of old rats. The present study was conducted to determine whether higher PKC activity could be due to altered expression of some of the PKC isoforms in the superficial cortex (rich in PTs) of old rats. Fluorimetric measurement showed almost twofold increase in the PKC activities in homogenates and membranes of old (24 mo) compared with adult (6 mo) rats. Interestingly, in the basal state PKC-betaI was overexpressed in the membranes, whereas PKC-delta expression was increased in the cytosol of old compared with adult rats. Treatment of the cortical slices with either SKF-38393, a D1-like agonist, or PDBu, a direct activator of PKC, caused translocation of PKC-betaI from cytosol to membranes in adult but not in old rats. Both of these drugs caused translocation of PKC-delta from membranes to cytosol in adult but not in old rats. These drugs had no effect on translocation of PKC-zeta in both adult and old rats. Both PKC-betaI and -delta co-immunoprecipitated with alpha1-subunit of Na-K-ATPase in adult and old rats. These observations suggest that both SKF-38393 and PDBu differentially regulate PKC-betaI and -delta in adult but not in old rats. Also, PKC-betaI and -delta seem to interact with Na-K-ATPase in these animals. The overexpression of both PKC-betaI and -delta in old rats could be responsible for a higher basal PKC activity, which causes the hyperphosphorylation of Na-K-ATPase and contributes to the diminished inhibition of Na-K-ATPase activity by dopamine in old rats.

UI MeSH Term Description Entries
D007687 Kidney Tubules, Proximal The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE. Proximal Kidney Tubule,Proximal Renal Tubule,Kidney Tubule, Proximal,Proximal Kidney Tubules,Proximal Renal Tubules,Renal Tubule, Proximal,Renal Tubules, Proximal,Tubule, Proximal Kidney,Tubule, Proximal Renal,Tubules, Proximal Kidney,Tubules, Proximal Renal
D008297 Male Males
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015647 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine A selective D1 dopamine receptor agonist used primarily as a research tool. 1H-3-Benzazepine-7,8-diol, 2,3,4,5-tetrahydro-1-phenyl-,R-SK&F 38393,SK&F-38393,SKF 38393-A,SKF-38393,SKF38393,RSK&F 38393,SK&F 38393,SK&F38393,SKF 38393,SKF 38393 A,SKF 38393A
D017447 Receptors, Dopamine D1 A subfamily of G-PROTEIN-COUPLED RECEPTORS that bind the neurotransmitter DOPAMINE and modulate its effects. D1-class receptor genes lack INTRONS, and the receptors stimulate ADENYLYL CYCLASES. Dopamine D1 Receptors,Dopamine-D1 Receptor,D1 Receptors, Dopamine,Dopamine D1 Receptor,Receptor, Dopamine-D1

Related Publications

Mohammad Asghar, and Tahir Hussain, and Mustafa F Lokhandwala
June 2004, Mechanisms of ageing and development,
Mohammad Asghar, and Tahir Hussain, and Mustafa F Lokhandwala
September 2001, Life sciences,
Mohammad Asghar, and Tahir Hussain, and Mustafa F Lokhandwala
November 2008, American journal of physiology. Cell physiology,
Mohammad Asghar, and Tahir Hussain, and Mustafa F Lokhandwala
June 1997, Journal of applied physiology (Bethesda, Md. : 1985),
Mohammad Asghar, and Tahir Hussain, and Mustafa F Lokhandwala
March 2000, Journal of neuroimmunology,
Mohammad Asghar, and Tahir Hussain, and Mustafa F Lokhandwala
March 1988, Psychology and aging,
Mohammad Asghar, and Tahir Hussain, and Mustafa F Lokhandwala
January 1988, Veterinary pathology,
Mohammad Asghar, and Tahir Hussain, and Mustafa F Lokhandwala
January 1991, The American journal of physiology,
Mohammad Asghar, and Tahir Hussain, and Mustafa F Lokhandwala
January 1982, Neurobiology of aging,
Mohammad Asghar, and Tahir Hussain, and Mustafa F Lokhandwala
January 1990, Neurobiology of aging,
Copied contents to your clipboard!