Postsynaptic silent synapses: evidence and mechanisms. 2003

John T R Isaac
MRC Centre for Synaptic Plasticity, Department of Anatomy, University of Bristol, Bristol BS8 1TD, UK. j.t.r.issacs@bris.ac.uk

In this review I discuss the evidence that some glutamatergic synapses exist that lack surface-expressed postsynaptic AMPA receptors (AMPARs) but contain NMDA receptors opposed to a functional release site. I have summarised the electrophysiological, anatomical and cell biological evidence for such postsynaptically silent synapses, and data that support the idea of rapid AMPAR insertion at silent synapses during long-term potentiation (LTP). I also discuss recent findings suggesting that developmental and activity-dependent alteration in the postsynaptic glutamate receptor composition is a general principle that occurs for other receptor subtypes. This review is not intended to provide a full discussion of possible presynaptic mechanisms for silent synapses; these are covered in the accompanying recent article [Voronin and Cherubini (this issue)].

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D017470 Receptors, Glutamate Cell-surface proteins that bind glutamate and trigger changes which influence the behavior of cells. Glutamate receptors include ionotropic receptors (AMPA, kainate, and N-methyl-D-aspartate receptors), which directly control ion channels, and metabotropic receptors which act through second messenger systems. Glutamate receptors are the most common mediators of fast excitatory synaptic transmission in the central nervous system. They have also been implicated in the mechanisms of memory and of many diseases. Excitatory Amino Acid Receptors,Glutamate Receptors,Receptors, Excitatory Amino Acid,Excitatory Amino Acid Receptor,Glutamate Receptor,Receptor, Glutamate
D019706 Excitatory Postsynaptic Potentials Depolarization of membrane potentials at the SYNAPTIC MEMBRANES of target neurons during neurotransmission. Excitatory postsynaptic potentials can singly or in summation reach the trigger threshold for ACTION POTENTIALS. EPSP,End Plate Potentials,Excitatory Postsynaptic Currents,Current, Excitatory Postsynaptic,Currents, Excitatory Postsynaptic,End Plate Potential,Excitatory Postsynaptic Current,Excitatory Postsynaptic Potential,Plate Potential, End,Plate Potentials, End,Postsynaptic Current, Excitatory,Postsynaptic Currents, Excitatory,Postsynaptic Potential, Excitatory,Postsynaptic Potentials, Excitatory,Potential, End Plate,Potential, Excitatory Postsynaptic,Potentials, End Plate,Potentials, Excitatory Postsynaptic

Related Publications

John T R Isaac
November 1998, The Journal of neuroscience : the official journal of the Society for Neuroscience,
John T R Isaac
November 2008, Nature reviews. Neuroscience,
John T R Isaac
August 2023, Current opinion in neurobiology,
John T R Isaac
January 1999, Learning & memory (Cold Spring Harbor, N.Y.),
John T R Isaac
January 2017, Biochemical and biophysical research communications,
Copied contents to your clipboard!