Steroid-sensitive GABAA receptors in the fetal sheep brain. 2003

Kelly J Crossley, and Ilias Nitsos, and David W Walker, and Andrew J Lawrence, and Philip M Beart, and Jonathan J Hirst
Department of Physiology, Monash University, P.O. Box, Building 13F, Clayton, Victoria 3800, Australia.

Neuroactive steroids such as allopregnanolone (3 alpha-hydroxy-5 alpha-pregnan-20-one) influence central nervous system (CNS) excitability by increasing GABA (gamma aminobutyric acid) inhibitory activity. Allopregnanolone concentrations are higher in the fetal compared to the adult ovine brain, suggesting that this neurosteroid may have a role in regulating fetal CNS activity during gestation. We examined the localisation of allopregnanolone-sensitive GABA(A) receptors in the fetal brain to determine if their sensitivity to allopregnanolone changed during late gestation. The binding of [(35)S] tert-butylbicyclophosothionate (TBPS) was used to identify the GABA-chloride ion receptor complex in fetal sheep brains at 90-95, 115-120 and 140-145 days gestational age (GA; term approximately 147 days), by autoradiography. Allopregnanolone (200 nM) reduced [(35)S]TBPS binding by 70-100% throughout the brain at all fetal ages examined. The levels of [(35)S]TBPS binding increased with advancing gestation in all regions examined except some areas of the medulla. Functionally related nuclei and brain areas associated with regulating somato/viscerosensory functions displayed high levels of [(35)S]TBPS binding from mid-gestation. These results indicate that allopregnanolone may interact with GABA(A) receptors to inhibit fetal CNS activity from mid-gestation. This inhibition may contribute to maintaining the sleep-like behaviour and low incidence of arousal-type activity typical of fetal life, and may be neuroprotective by limiting excitatory neurotransmission.

UI MeSH Term Description Entries
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011280 Pregnanolone A pregnane found in the urine of pregnant women and sows. It has anesthetic, hypnotic, and sedative properties. Eltanolone,3 alpha, 5 beta-Tetrahydroprogesterone,3 alpha-Hydroxy-5 alpha-pregnan-20-one,3 alpha-Hydroxy-5 beta-pregnan-20-one,3-Hydroxypregnan-20-one,3beta-Hydroxy-5alpha-pregnan-20-one,Allopregnan-3 beta-ol-20-one,Allopregnanolone,Epipregnanolone,Pregnan-3alpha-ol-20-one,Pregnanolone, (3alpha)-isomer,Pregnanolone, (3alpha, 5beta, 17-alpha)-isomer,Pregnanolone, (3alpha,5alpha)-isomer,Pregnanolone, (3alpha,5beta)-isomer,Pregnanolone, (3beta)-isomer,Pregnanolone, (3beta, 5alpha)-isomer,Pregnanolone, (3beta, 5alpha, 17alpha)-isomer,Pregnanolone, (3beta, 5alpha, 8alpha, 17beta)-isomer,Pregnanolone, (3beta, 5beta)-isomer,Pregnanolone, (3beta, 5beta, 17alpha)-isomer,Pregnanolone, (3beta, 5beta,14beta)-isomer,Pregnanolone, (5alpha)-isomer,Sepranolone,3 Hydroxypregnan 20 one,3 alpha Hydroxy 5 alpha pregnan 20 one,3 alpha Hydroxy 5 beta pregnan 20 one,3 alpha, 5 beta Tetrahydroprogesterone,3beta Hydroxy 5alpha pregnan 20 one,Allopregnan 3 beta ol 20 one,Pregnan 3alpha ol 20 one,alpha-Hydroxy-5 alpha-pregnan-20-one, 3,alpha-Hydroxy-5 beta-pregnan-20-one, 3,alpha-pregnan-20-one, 3 alpha-Hydroxy-5,beta-ol-20-one, Allopregnan-3,beta-pregnan-20-one, 3 alpha-Hydroxy-5
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005260 Female Females
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D005865 Gestational Age The age of the conceptus, beginning from the time of FERTILIZATION. In clinical obstetrics, the gestational age is often estimated from the onset of the last MENSTRUATION which is about 2 weeks before OVULATION and fertilization. It is also estimated to begin from fertilization, estrus, coitus, or artificial insemination. Embryologic Age,Fetal Maturity, Chronologic,Chronologic Fetal Maturity,Fetal Age,Maturity, Chronologic Fetal,Age, Embryologic,Age, Fetal,Age, Gestational,Ages, Embryologic,Ages, Fetal,Ages, Gestational,Embryologic Ages,Fetal Ages,Gestational Ages
D000367 Age Factors Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time. Age Reporting,Age Factor,Factor, Age,Factors, Age

Related Publications

Kelly J Crossley, and Ilias Nitsos, and David W Walker, and Andrew J Lawrence, and Philip M Beart, and Jonathan J Hirst
May 1994, Brain research,
Kelly J Crossley, and Ilias Nitsos, and David W Walker, and Andrew J Lawrence, and Philip M Beart, and Jonathan J Hirst
September 2006, Brain research,
Kelly J Crossley, and Ilias Nitsos, and David W Walker, and Andrew J Lawrence, and Philip M Beart, and Jonathan J Hirst
January 1995, Advances in biochemical psychopharmacology,
Kelly J Crossley, and Ilias Nitsos, and David W Walker, and Andrew J Lawrence, and Philip M Beart, and Jonathan J Hirst
January 1989, Trends in pharmacological sciences,
Kelly J Crossley, and Ilias Nitsos, and David W Walker, and Andrew J Lawrence, and Philip M Beart, and Jonathan J Hirst
October 1980, Lancet (London, England),
Kelly J Crossley, and Ilias Nitsos, and David W Walker, and Andrew J Lawrence, and Philip M Beart, and Jonathan J Hirst
March 1997, British journal of pharmacology,
Kelly J Crossley, and Ilias Nitsos, and David W Walker, and Andrew J Lawrence, and Philip M Beart, and Jonathan J Hirst
May 2002, Danish medical bulletin,
Kelly J Crossley, and Ilias Nitsos, and David W Walker, and Andrew J Lawrence, and Philip M Beart, and Jonathan J Hirst
March 2017, Epilepsia,
Kelly J Crossley, and Ilias Nitsos, and David W Walker, and Andrew J Lawrence, and Philip M Beart, and Jonathan J Hirst
October 2009, Molecular pharmacology,
Kelly J Crossley, and Ilias Nitsos, and David W Walker, and Andrew J Lawrence, and Philip M Beart, and Jonathan J Hirst
April 1995, Brain research. Developmental brain research,
Copied contents to your clipboard!