Biosynthesis of 3-O-sulfated heparan sulfate: unique substrate specificity of heparan sulfate 3-O-sulfotransferase isoform 5. 2003

Jinghua Chen, and Michael B Duncan, and Kevin Carrick, and R Marshall Pope, and Jian Liu
Division of Medicinal Chemistry and Natural Products, School of Pharmacy, CB#7360, University of North Carolina, Chapel Hill, NC 27599, USA.

Heparan sulfate 3-O-sulfotransferase transfers sulfate to the 3-OH position of a glucosamine to generate 3-O-sulfated heparan sulfate (HS), which is a rare component in HS from natural sources. We previously reported that 3-O- sulfotransferase isoform 5 (3-OST-5) generates both an antithrombin-binding site to exhibit anticoagulant activity and a binding site for herpes simplex virus 1 glycoprotein D to serve as an entry receptor for herpes simplex virus. In this study, we characterize the substrate specificity of 3-OST-5 using the purified enzyme. The enzyme was expressed in insect cells using the baculovirus expression approach and was purified by using heparin-Sepharose and 3',5'-ADP- agarose chromatographies. As expected, the purified enzyme generates both an antithrombin binding site and a glycoprotein D binding site. We isolated IdoUA-AnMan3S and IdoUA-AnMan3S6S from nitrous acid-degraded 3-OST-5-modified HS (pH 1.5), suggesting that 3-OST-5 enzyme sulfates the glucosamine residue that is linked to an iduronic acid residue at the nonreducing end. We also isolated a disaccharide with a structure of DeltaUA2S-GlcNS3S and a tetrasaccharide with a structure of DeltaUA2S-GlcNS-IdoUA2S-GlcNH23S6S from heparin lyases-digested 3-OST-5-modified HS. Our results suggest that 3-OST-5 enzyme sulfates both N-sulfated glucosamine and N-unsubstituted glucosamine residues. Taken together, the results indicate that 3-OST-5 has broader substrate specificity than those of 3-OST-1 and 3-OST-3. The unique substrate specificity of 3-OST-5 serves as an additional tool to study the mechanism for the biosynthesis of biologically active HS.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006497 Heparitin Sulfate A heteropolysaccharide that is similar in structure to HEPARIN. It accumulates in individuals with MUCOPOLYSACCHARIDOSIS. Heparan Sulfate,Sulfate, Heparan,Sulfate, Heparitin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000991 Antithrombins Endogenous factors and drugs that directly inhibit the action of THROMBIN, usually by blocking its enzymatic activity. They are distinguished from INDIRECT THROMBIN INHIBITORS, such as HEPARIN, which act by enhancing the inhibitory effects of antithrombins. Antithrombin,Direct Antithrombin,Direct Antithrombins,Direct Thrombin Inhibitor,Direct Thrombin Inhibitors,Antithrombin, Direct,Antithrombins, Direct,Inhibitor, Direct Thrombin,Thrombin Inhibitor, Direct,Thrombin Inhibitors, Direct
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D015238 Sulfotransferases Enzymes which transfer sulfate groups to various acceptor molecules. They are involved in posttranslational sulfation of proteins and sulfate conjugation of exogenous chemicals and bile acids. EC 2.8.2. Sulfotransferase
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Jinghua Chen, and Michael B Duncan, and Kevin Carrick, and R Marshall Pope, and Jian Liu
December 2021, ACS catalysis,
Jinghua Chen, and Michael B Duncan, and Kevin Carrick, and R Marshall Pope, and Jian Liu
October 2021, ACS chemical biology,
Jinghua Chen, and Michael B Duncan, and Kevin Carrick, and R Marshall Pope, and Jian Liu
May 2001, Biochemistry,
Jinghua Chen, and Michael B Duncan, and Kevin Carrick, and R Marshall Pope, and Jian Liu
May 2014, The Journal of biological chemistry,
Jinghua Chen, and Michael B Duncan, and Kevin Carrick, and R Marshall Pope, and Jian Liu
July 2003, The Journal of biological chemistry,
Jinghua Chen, and Michael B Duncan, and Kevin Carrick, and R Marshall Pope, and Jian Liu
August 2021, RSC chemical biology,
Jinghua Chen, and Michael B Duncan, and Kevin Carrick, and R Marshall Pope, and Jian Liu
June 2004, The Journal of biological chemistry,
Jinghua Chen, and Michael B Duncan, and Kevin Carrick, and R Marshall Pope, and Jian Liu
August 2017, Organic & biomolecular chemistry,
Jinghua Chen, and Michael B Duncan, and Kevin Carrick, and R Marshall Pope, and Jian Liu
December 2008, Proceedings of the National Academy of Sciences of the United States of America,
Jinghua Chen, and Michael B Duncan, and Kevin Carrick, and R Marshall Pope, and Jian Liu
August 2012, Journal of diabetes investigation,
Copied contents to your clipboard!