Temperature dependence of electron-to-lattice energy transfer in single-wall carbon nanotube bundles. 2003

Gunnar Moos, and Roman Fasel, and Tobias Hertel
Department of Physical Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, D-14195 Berlin, Germany.

The electron-phonon coupling strength in single-wall carbon nanotube (SWNT) bundles has been studied directly in the time domain by femtosecond time-resolved photoelectron spectroscopy. We have measured the dependence of H(Te, Tl), the rate of energy transfer between the electronic system and the lattice as a function of electron and lattice temperatures Te and Tl. The experiments are consistent with a T5 dependence of H on the electron and lattice temperatures, respectively. The results can be related to the e-ph mass enhancement parameter lambda. The experimentally obtained value of for lambda/[symbol: see text] D2, where [symbol: see text] D is the Debye temperature, suggests that e-ph scattering times at the Fermi level of SWNT bundles can be exceptionally long, exceeding 1.5 ps at room temperature.

UI MeSH Term Description Entries
D008422 Materials Testing The testing of materials and devices, especially those used for PROSTHESES AND IMPLANTS; SUTURES; TISSUE ADHESIVES; etc., for hardness, strength, durability, safety, efficacy, and biocompatibility. Biocompatibility Testing,Biocompatible Materials Testing,Hemocompatibility Testing,Testing, Biocompatible Materials,Testing, Hemocompatible Materials,Hemocompatibility Testings,Hemocompatible Materials Testing,Materials Testing, Biocompatible,Materials Testing, Hemocompatible,Testing, Biocompatibility,Testing, Hemocompatibility,Testing, Materials,Testings, Biocompatibility
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D003461 Crystallography The branch of science that deals with the geometric description of crystals and their internal arrangement. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Crystallographies
D004583 Electrons Stable elementary particles having the smallest known negative charge, present in all elements; also called negatrons. Positively charged electrons are called positrons. The numbers, energies and arrangement of electrons around atomic nuclei determine the chemical identities of elements. Beams of electrons are called CATHODE RAYS. Fast Electrons,Negatrons,Positrons,Electron,Electron, Fast,Electrons, Fast,Fast Electron,Negatron,Positron
D004735 Energy Transfer The transfer of energy of a given form among different scales of motion. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed). It includes the transfer of kinetic energy and the transfer of chemical energy. The transfer of chemical energy from one molecule to another depends on proximity of molecules so it is often used as in techniques to measure distance such as the use of FORSTER RESONANCE ENERGY TRANSFER. Transfer, Energy
D013053 Spectrophotometry The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

Gunnar Moos, and Roman Fasel, and Tobias Hertel
April 2001, Physical review letters,
Gunnar Moos, and Roman Fasel, and Tobias Hertel
June 2008, Journal of the American Chemical Society,
Gunnar Moos, and Roman Fasel, and Tobias Hertel
September 2007, Physical review letters,
Gunnar Moos, and Roman Fasel, and Tobias Hertel
September 2003, Angewandte Chemie (International ed. in English),
Gunnar Moos, and Roman Fasel, and Tobias Hertel
December 2008, Langmuir : the ACS journal of surfaces and colloids,
Gunnar Moos, and Roman Fasel, and Tobias Hertel
September 2009, Journal of the American Chemical Society,
Gunnar Moos, and Roman Fasel, and Tobias Hertel
July 2001, Science (New York, N.Y.),
Gunnar Moos, and Roman Fasel, and Tobias Hertel
January 2014, Faraday discussions,
Gunnar Moos, and Roman Fasel, and Tobias Hertel
December 2007, Journal of the American Chemical Society,
Gunnar Moos, and Roman Fasel, and Tobias Hertel
April 2007, Journal of colloid and interface science,
Copied contents to your clipboard!