The foamy virus envelope glycoproteins. 2003

D Lindemann, and P A Goepfert
Institut für Virologie, Medizinische Fakultät Carl-Gustav-Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany. dirk.lindemann@mailbox.tu-dresden.de

The main functions of retroviral glycoproteins are recognition and binding to the cellular virus receptor as well as fusion of viral and cellular lipid membranes to release the viral particle into the cytoplasm of the host cell. Foamy viruses (FVs) are a special group of retroviruses with a very broad host range that use a currently unknown cellular receptor for entry. Nevertheless, many functions of the FV envelope glycoproteins in the viral replication cycle have been characterized in detail over the last years. Several unique features not found for any other retrovirus were identified. These include the presence of two types of FV Env proteins, gp170(Env-Bet) and gp130Env, and the strict requirement of gp130Env coexpression for the FV budding and particle release process, a function that cannot be compensated for by any other viral glycoprotein tested so far. Furthermore, domains in gp130Env could be characterized that influence its intracellular distribution, cell surface transport, and its specific interaction with the viral capsid during particle egress. In addition, it has recently been shown that gp130Env expression alone induces release of subviral particles from cells. This review summarizes the current knowledge about the nature of the FV Env proteins and their function in the viral replication cycle.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014759 Viral Envelope Proteins Integral membrane proteins that are incorporated into the VIRAL ENVELOPE. They are glycosylated during VIRAL ASSEMBLY. Envelope Proteins, Viral,Viral Envelope Glycoproteins,Viral Envelope Protein,Virus Envelope Protein,Virus Peplomer Proteins,Bovine Leukemia Virus Glycoprotein gp51,Hepatitis Virus (MHV) Glycoprotein E2,LaCrosse Virus Envelope Glycoprotein G1,Simian Sarcoma Virus Glycoprotein 70,Viral Envelope Glycoprotein gPr90 (Murine Leukemia Virus),Viral Envelope Glycoprotein gp55 (Friend Virus),Viral Envelope Proteins E1,Viral Envelope Proteins E2,Viral Envelope Proteins gp52,Viral Envelope Proteins gp70,Virus Envelope Proteins,Envelope Glycoproteins, Viral,Envelope Protein, Viral,Envelope Protein, Virus,Envelope Proteins, Virus,Glycoproteins, Viral Envelope,Peplomer Proteins, Virus,Protein, Viral Envelope,Protein, Virus Envelope,Proteins, Viral Envelope,Proteins, Virus Envelope,Proteins, Virus Peplomer
D014771 Virion The infective system of a virus, composed of the viral genome, a protein core, and a protein coat called a capsid, which may be naked or enclosed in a lipoprotein envelope called the peplos. Virus Particle,Viral Particle,Viral Particles,Particle, Viral,Particle, Virus,Particles, Viral,Particles, Virus,Virions,Virus Particles

Related Publications

D Lindemann, and P A Goepfert
June 2016, Acta virologica,
D Lindemann, and P A Goepfert
January 2012, Acta virologica,
D Lindemann, and P A Goepfert
March 2002, AIDS research and human retroviruses,
D Lindemann, and P A Goepfert
January 1999, The Journal of general virology,
D Lindemann, and P A Goepfert
January 1994, Journal of acquired immune deficiency syndromes,
D Lindemann, and P A Goepfert
August 2004, Biology of the cell,
D Lindemann, and P A Goepfert
April 1999, Journal of virology,
D Lindemann, and P A Goepfert
August 2006, Journal of virology,
D Lindemann, and P A Goepfert
January 2003, Reviews in medical virology,
D Lindemann, and P A Goepfert
November 2001, The Journal of general virology,
Copied contents to your clipboard!