Effects of potassium channel modulation during global ischaemia in isolated rat heart with and without cardioplegia. 1992

M Galiñanes, and M J Shattock, and D J Hearse
Rayne Institute, St Thomas' Hospital, London, United Kingdom.

OBJECTIVE The opening of potassium (K+) channels during regional ischaemia may, by inducing rapid contractile arrest, be an intrinsic energy sparing mechanism. Thus K+ channel openers (for example, lemakalim) exert significant anti-ischaemic effects, whereas glibenclamide exacerbates ischaemic contracture and limits postischaemic functional recovery. The aim of the study was to investigate the ability of these compounds to influence ischaemic injury when used either alone or in combination with rapid arrest induced by a high K+ cardioplegic solution. METHODS Contractile function of isolated Langendorff perfused rat hearts was assessed using an intraventricular balloon. Hearts were subjected to normothermic global ischaemia (20 min) or cardioplegic arrest (35 min) with and without glibenclamide or lemakalim. Lemakalim (10 mumol.litre-1) or glibenclamide (10 mumol.litre-1) was given, in the presence or absence of cardioplegia, for 2 min immediately prior to the onset of ischaemia. The rate of ischaemia induced contractile failure, the severity of ischaemic contracture, and the degree of postischaemic functional recovery were all measured. RESULTS In the absence of cardioplegia, the time to contractile arrest in control hearts was 133 (SEM 4) s. This was increased by glibenclamide, to 145(6) s, and decreased by lemakalim, to 112(6) s. The time to onset of ischaemic contracture [8(1) min] was accelerated by glibenclamide [4(1) min] and delayed by lemakalim [14(1) min]. Lemakalim significantly improved the recovery of left ventricular developed pressure from 49(7)% in control hearts to 65(3)%, and left ventricular end diastolic pressure from 41(3) to 21(4) mm Hg. Hearts pretreated with glibenclamide showed similar recoveries to control hearts. During reperfusion, lemakalim exerted a transient vasodilator effect whereas glibenclamide caused a transient vasoconstriction. When either glibenclamide or lemakalim was added to a high K+ cardioplegic solution and hearts rendered ischaemic for 35 min, the ability of both compounds to influence ischaemic contracture and postischaemic functional recovery was lost. In additional studies the effect of lemakalim on the relative times to ischaemia induced mechanical failure and electrical arrest was assessed. In control hearts the time to contractile failure was 128(5) s and the time to electrical arrest was 241(30) s, while in the lemakalim treated hearts the values were 103(2) s and 509(161) s, respectively. In the lemakalim group all the hearts showed sustained ventricular arrhythmias; in the control group there were no arrhythmias. CONCLUSIONS Lemakalim can exert a significant anti-ischaemic effect when given alone. This effect is lost when it is used in combination with high K+ cardioplegia. The anti-ischaemic properties of lemakalim may thus be limited to its ability to accelerate contractile arrest.

UI MeSH Term Description Entries
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D011758 Pyrroles Azoles of one NITROGEN and two double bonds that have aromatic chemical properties. Pyrrole
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D003326 Coronary Circulation The circulation of blood through the CORONARY VESSELS of the HEART. Circulation, Coronary
D003331 Coronary Vessels The veins and arteries of the HEART. Coronary Arteries,Sinus Node Artery,Coronary Veins,Arteries, Coronary,Arteries, Sinus Node,Artery, Coronary,Artery, Sinus Node,Coronary Artery,Coronary Vein,Coronary Vessel,Sinus Node Arteries,Vein, Coronary,Veins, Coronary,Vessel, Coronary,Vessels, Coronary
D005905 Glyburide An antidiabetic sulfonylurea derivative with actions like those of chlorpropamide Glibenclamide,Daonil,Diabeta,Euglucon 5,Euglucon N,Glybenclamide,HB-419,HB-420,Maninil,Micronase,Neogluconin,HB 419,HB 420,HB419,HB420
D006324 Heart Arrest, Induced A procedure to stop the contraction of MYOCARDIUM during HEART SURGERY. It is usually achieved with the use of chemicals (CARDIOPLEGIC SOLUTIONS) or cold temperature (such as chilled perfusate). Cardiac Arrest, Induced,Cardioplegia,Induced Cardiac Arrest,Induced Heart Arrest,Cardioplegias
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001578 Benzopyrans Compounds with a core of fused benzo-pyran rings. Benzopyran,Chromene,Chromenes
D014665 Vasodilator Agents Drugs used to cause dilation of the blood vessels. Vasoactive Antagonists,Vasodilator,Vasodilator Agent,Vasodilator Drug,Vasorelaxant,Vasodilator Drugs,Vasodilators,Vasorelaxants,Agent, Vasodilator,Agents, Vasodilator,Antagonists, Vasoactive,Drug, Vasodilator,Drugs, Vasodilator

Related Publications

M Galiñanes, and M J Shattock, and D J Hearse
April 1984, The Annals of thoracic surgery,
M Galiñanes, and M J Shattock, and D J Hearse
December 1991, Cardiovascular drugs and therapy,
M Galiñanes, and M J Shattock, and D J Hearse
December 1989, The Journal of thoracic and cardiovascular surgery,
M Galiñanes, and M J Shattock, and D J Hearse
January 1992, General pharmacology,
M Galiñanes, and M J Shattock, and D J Hearse
July 1989, Clinical and experimental pharmacology & physiology,
M Galiñanes, and M J Shattock, and D J Hearse
October 2005, Di 1 jun yi da xue xue bao = Academic journal of the first medical college of PLA,
M Galiñanes, and M J Shattock, and D J Hearse
January 1989, Basic research in cardiology,
M Galiñanes, and M J Shattock, and D J Hearse
January 2019, Molecular and cellular biochemistry,
M Galiñanes, and M J Shattock, and D J Hearse
October 1988, Pflugers Archiv : European journal of physiology,
M Galiñanes, and M J Shattock, and D J Hearse
April 1996, Prostaglandins, leukotrienes, and essential fatty acids,
Copied contents to your clipboard!