Germination of spores of Bacillus subtilis with dodecylamine. 2003

B Setlow, and A E Cowan, and P Setlow
Department of Biochemistry, University of Connecticut Health Center, Farmington, CT 06032, USA. setlow@nso2.uchc.edu

OBJECTIVE To determine the properties of Bacillus subtilis spores germinated with the alkylamine dodecylamine, and the mechanism of dodecylamine-induced spore germination. RESULTS Spores of B. subtilis prepared in liquid medium were germinated efficiently by dodecylamine, while spores prepared on solid medium germinated more poorly with this agent. Dodecylamine germination of spores was accompanied by release of almost all spore dipicolinic acid (DPA), degradation of the spore's peptidoglycan cortex, release of the spore's pool of free adenine nucleotides and the killing of the spores. The dodecylamine-germinated spores did not initiate metabolism, did not degrade their pool of small, acid-soluble spore proteins efficiently and had a significantly lower level of core water than did spores germinated by nutrients. As measured by DPA release, dodecylamine readily induced germination of B. subtilis spores that: (a) were decoated, (b) lacked all the receptors for nutrient germinants, (c) lacked both the lytic enzymes either of which is essential for cortex degradation, or (d) had a cortex that could not be attacked by the spore's cortex-lytic enzymes. The DNA in dodecylamine-germinated wild-type spores was readily stained, while the DNA in dodecylamine-germinated spores of strains that were incapable of spore cortex degradation was not. These latter germinated spores also did not release their pool of free adenine nucleotides. CONCLUSIONS These results indicate that: (a) the spore preparation method is very important in determining the rate of spore germination with dodecylamine, (b) wild-type spores germinated by dodecylamine progress only part way through the germination process, (c) dodecylamine may trigger spore germination by a novel mechanism involving the activation of neither the spore's nutrient germinant receptors nor the cortex-lytic enzymes, and (d) dodecylamine may trigger spore germination by directly or indirectly activating release of DPA from the spore core, through the opening of channels for DPA in the spore's inner membrane. CONCLUSIONS These results provide new insight into the mechanism of spore germination with the cationic surfactant dodecylamine, and also into the mechanism of spore germination in general. New knowledge of mechanisms to stimulate spore germination may have applied utility, as germinated spores are much more sensitive to processing treatments than are dormant spores.

UI MeSH Term Description Entries
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D010848 Picolinic Acids Compounds with general formula C5H4N(CO2H) derived from PYRIDINE, having a carboxylic acid substituent at the 2-position. Acids, Picolinic
D000227 Adenine Nucleotides Adenine Nucleotide,Adenosine Phosphate,Adenosine Phosphates,Nucleotide, Adenine,Nucleotides, Adenine,Phosphate, Adenosine,Phosphates, Adenosine
D000409 Alanine A non-essential amino acid that occurs in high levels in its free state in plasma. It is produced from pyruvate by transamination. It is involved in sugar and acid metabolism, increases IMMUNITY, and provides energy for muscle tissue, BRAIN, and the CENTRAL NERVOUS SYSTEM. Abufène,Alanine, L-Isomer,L-Alanine,Alanine, L Isomer,L Alanine,L-Isomer Alanine
D000588 Amines A group of compounds derived from ammonia by substituting organic radicals for the hydrogens. (From Grant & Hackh's Chemical Dictionary, 5th ed) Amine
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D013171 Spores, Bacterial Heat and stain resistant, metabolically inactive bodies formed within the vegetative cells of bacteria of the genera Bacillus and Clostridium. Bacterial Spores,Bacterial Spore,Spore, Bacterial
D013501 Surface-Active Agents Agents that modify interfacial tension of water; usually substances that have one lipophilic and one hydrophilic group in the molecule; includes soaps, detergents, emulsifiers, dispersing and wetting agents, and several groups of antiseptics. Surface Active Agent,Surface-Active Agent,Surfactant,Surfactants,Tenside,Amphiphilic Agents,Surface Active Agents,Tensides,Active Agent, Surface,Active Agents, Surface,Agent, Surface Active,Agent, Surface-Active,Agents, Amphiphilic,Agents, Surface Active,Agents, Surface-Active

Related Publications

B Setlow, and A E Cowan, and P Setlow
September 1977, Nihon saikingaku zasshi. Japanese journal of bacteriology,
B Setlow, and A E Cowan, and P Setlow
June 1965, Proceedings of the National Academy of Sciences of the United States of America,
B Setlow, and A E Cowan, and P Setlow
February 2007, Journal of bacteriology,
B Setlow, and A E Cowan, and P Setlow
August 2015, Journal of applied microbiology,
B Setlow, and A E Cowan, and P Setlow
January 1971, Die Nahrung,
B Setlow, and A E Cowan, and P Setlow
September 1971, Igaku to seibutsugaku. Medicine and biology,
B Setlow, and A E Cowan, and P Setlow
October 1974, Journal of bacteriology,
B Setlow, and A E Cowan, and P Setlow
October 1974, Journal of bacteriology,
Copied contents to your clipboard!