Herpes simplex virus type 1 exhibits a tropism for basal entry in polarized epithelial cells. 2003

Mario Schelhaas, and Matthias Jansen, and Ingo Haase, and Dagmar Knebel-Mörsdorf
Max Planck Institute for Neurological Research, University of Cologne, Gleuelerstrasse 50, D-50931 Cologne, Germany.

Herpes simplex virus type 1 (HSV-1) enters its host via epithelia and spreads to neuronal cells where latency is established. Hence, the in vivo route of infection relies on penetration and subsequent passage of HSV-1 through highly polarized cells. Infection studies were performed in both polarized MDCKII cells and primary human keratinocytes to gain insight into the pathway of virus entry into individual epithelial cells. Early viral gene expression was barely detectable in confluent MDCKII cells, even at high m.o.i. However, after wounding the cell layer, infected cells were observed next to the wound, where basolateral membranes were accessible. In subconfluent monolayers, MDCKII cells are organized in islets. After infection, viral capsids and early viral gene expression were detectable in peripheral cells of islets, supporting virus penetration via basolateral membranes. Further infection studies were performed in human keratinocytes, which represent the primary target cells for HSV-1 infection in vivo. In primary keratinocytes grown as monolayer cultures and wounded prior to infection, HSV-1 infection led to early viral gene expression predominantly in cells next to the wound. When stratifying cultures of primary human keratinocytes were infected, early viral gene expression was localized to peripheral cells of basal keratinocytes. Finally, infection of epithelial tissue such as human foreskin epithelia demonstrated HSV-1 entry exclusively via basal cell layers. Staining of the potential coreceptor nectin-1/HveC revealed no correlation of receptor localization and virus entry sites in keratinocytes. These results provide first evidence for a virus entry mechanism that relies on the accessibility to basal surfaces of epithelial tissue and to basolateral membranes, both in MDCKII and primary keratinocytes.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D002213 Capsid The outer protein protective shell of a virus, which protects the viral nucleic acid. Capsids are composed of repeating units (capsomers or capsomeres) of CAPSID PROTEINS which when assembled together form either an icosahedral or helical shape. Procapsid,Prohead,Capsids,Procapsids,Proheads
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000075983 Nectins A family of calcium-independent cell adhesion molecules of the immunoglobulin superfamily. They are expressed by most cell types and mediate both homotypic and heterotypic cell-cell adhesion. Nectins function in a variety of morphogenetic and developmental processes that include organogenesis of the eye, ear, tooth, and cerebral cortex; they also play roles in viral infection and cell proliferation. CD111 Antigen,CD112 Antigen,CD113 Antigen,Herpesvirus Entry Mediator C,HevC Protein,Human Poliovirus Receptor Related 1,Nectin,Nectin-1,Nectin-1delta,Nectin-2,Nectin-2alpha,Nectin-2delta,Nectin-2gamma,Nectin-3,Nectin1delta,PVRL1,Poliovirus Receptor-Related Protein 1,Prr1 Protein,Antigen, CD111,Antigen, CD112,Antigen, CD113,Nectin 1,Nectin 1delta,Nectin 2,Nectin 2alpha,Nectin 2delta,Nectin 2gamma,Nectin 3,Poliovirus Receptor Related Protein 1
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications
D015603 Keratinocytes Epidermal cells which synthesize keratin and undergo characteristic changes as they move upward from the basal layers of the epidermis to the cornified (horny) layer of the skin. Successive stages of differentiation of the keratinocytes forming the epidermal layers are basal cell, spinous or prickle cell, and the granular cell. Keratinocyte
D015815 Cell Adhesion Molecules Surface ligands, usually glycoproteins, that mediate cell-to-cell adhesion. Their functions include the assembly and interconnection of various vertebrate systems, as well as maintenance of tissue integration, wound healing, morphogenic movements, cellular migrations, and metastasis. Cell Adhesion Molecule,Intercellular Adhesion Molecule,Intercellular Adhesion Molecules,Leukocyte Adhesion Molecule,Leukocyte Adhesion Molecules,Saccharide-Mediated Cell Adhesion Molecules,Saccharide Mediated Cell Adhesion Molecules,Adhesion Molecule, Cell,Adhesion Molecule, Intercellular,Adhesion Molecule, Leukocyte,Adhesion Molecules, Cell,Adhesion Molecules, Intercellular,Adhesion Molecules, Leukocyte,Molecule, Cell Adhesion,Molecule, Intercellular Adhesion,Molecule, Leukocyte Adhesion,Molecules, Cell Adhesion,Molecules, Intercellular Adhesion,Molecules, Leukocyte Adhesion

Related Publications

Mario Schelhaas, and Matthias Jansen, and Ingo Haase, and Dagmar Knebel-Mörsdorf
September 2010, The Journal of general virology,
Mario Schelhaas, and Matthias Jansen, and Ingo Haase, and Dagmar Knebel-Mörsdorf
May 1986, Journal of virology,
Mario Schelhaas, and Matthias Jansen, and Ingo Haase, and Dagmar Knebel-Mörsdorf
February 2011, The British journal of dermatology,
Mario Schelhaas, and Matthias Jansen, and Ingo Haase, and Dagmar Knebel-Mörsdorf
December 1995, Journal of medical virology,
Mario Schelhaas, and Matthias Jansen, and Ingo Haase, and Dagmar Knebel-Mörsdorf
November 2008, The FEBS journal,
Mario Schelhaas, and Matthias Jansen, and Ingo Haase, and Dagmar Knebel-Mörsdorf
January 1987, Microbiology and immunology,
Mario Schelhaas, and Matthias Jansen, and Ingo Haase, and Dagmar Knebel-Mörsdorf
January 1991, Intervirology,
Mario Schelhaas, and Matthias Jansen, and Ingo Haase, and Dagmar Knebel-Mörsdorf
July 1999, Human gene therapy,
Mario Schelhaas, and Matthias Jansen, and Ingo Haase, and Dagmar Knebel-Mörsdorf
January 2021, Frontiers in microbiology,
Mario Schelhaas, and Matthias Jansen, and Ingo Haase, and Dagmar Knebel-Mörsdorf
March 1998, The Journal of general virology,
Copied contents to your clipboard!