Intracerebroventricular administration of an endothelin ETB receptor agonist increases expressions of GDNF and BDNF in rat brain. 2003

Yutaka Koyama, and Kimiko Tsujikawa, and Toshio Matsuda, and Akemichi Baba
Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-Oka 1-6 Suita, Osaka 565-0871, Japan.

Endothelins (ETs) are suggested to be involved in functional alterations of astrocytes after brain injury, including proliferation, hypertrophy and production of neurotrophic factors. In this study, effects of Ala1,3,11,15-endothelin-1 (Ala1,3,11,15-ET-1), an ETB receptor selective agonist, on neurotrophic factor production were examined in rat brain. A continuous intracerebroventricular administration of Ala1,3,11,15-ET-1 (500 pmol/day for 7 days) increased the numbers of GFAP- and vimentin-positive astrocytes in the hippocampus, caudate putamen and cerebrum. Ala1,3,11,15-ET-1 did not induce neuronal degeneration and activation of microglia/macrophage in these brain regions. The intracerebroventricular administration of Ala1,3,11,15-ET-1 for 7 days caused two- to three-fold increases in glial cell line-derived neurotrophic factors (GDNF) mRNA in the hippocampus and cerebrum. The mRNA levels of brain-derived neurotrophic factors (BDNF) in caudate putamen were increased by Ala1,3,11,15-ET-1. Expressions of nerve growth factor (NGF) and basic fibroblast growth factor (bFGF) mRNA in these regions were not largely affected by Ala1,3,11,15-ET-1, except cerebral NGF mRNA level was increased. The Ala1,3,11,15-ET-1-induced increases in GDNF and BDNF mRNA levels were accompanied by increases in immunoreactive GDNF and BDNF. Immunohistochemical observations showed that GFAP-positive astrocytes expressed GDNF and BDNF in the brain regions of Ala1,3,11,15-ET-1-infused rats. In cultured rat astrocytes, Ala1,3,11,15-ET-1 (100 nm) increased mRNA levels of GDNF and BDNF. These results suggest that activation of brain ETB receptors induced GDNF and BDNF expression in astrocytes.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007276 Injections, Intraventricular Injections into the cerebral ventricles. Intraventricular Injections,Injection, Intraventricular,Intraventricular Injection
D008297 Male Males
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Yutaka Koyama, and Kimiko Tsujikawa, and Toshio Matsuda, and Akemichi Baba
January 2010, Journal of pharmacological sciences,
Yutaka Koyama, and Kimiko Tsujikawa, and Toshio Matsuda, and Akemichi Baba
January 2010, Neuroscience letters,
Yutaka Koyama, and Kimiko Tsujikawa, and Toshio Matsuda, and Akemichi Baba
February 1996, Brain research,
Yutaka Koyama, and Kimiko Tsujikawa, and Toshio Matsuda, and Akemichi Baba
February 1995, Biochemistry,
Yutaka Koyama, and Kimiko Tsujikawa, and Toshio Matsuda, and Akemichi Baba
May 1996, Biochemical and biophysical research communications,
Yutaka Koyama, and Kimiko Tsujikawa, and Toshio Matsuda, and Akemichi Baba
October 2004, Neuropeptides,
Yutaka Koyama, and Kimiko Tsujikawa, and Toshio Matsuda, and Akemichi Baba
June 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Yutaka Koyama, and Kimiko Tsujikawa, and Toshio Matsuda, and Akemichi Baba
February 2023, Cells,
Copied contents to your clipboard!