Epstein-Barr virus latent membrane protein 1: structure and functions. 2003

Hsin-Pai Li, and Yu-Sun Chang
Graduate Institute of Basic Medical Sciences, Chang Gung University, Taoyuan, Taiwan, ROC.

The Epstein-Barr virus latent membrane protein (LMP) 1 is a versatile protein that has profound effects on target cells through its effect on constitutive cellular proteins, e.g. TRAFs, TRADD, RIP, JAK3, BRAM1, and p85. LMP1 can stimulate or inhibit signaling pathways, resulting in transformation of rodent fibroblast cell lines, blockade of differentiation in epithelial cells, upregulation of anti-apoptotic proteins, production of cytokines, upregulation of cell surface markers, upregulation of DNA methyltransferase activity, and downregulation of cell adhesion molecules and cyclin-dependent kinases. Overall, this results in greater transformation and survival in LMP1-expressing cells. Within nasopharyngeal carcinoma biopsy tissues, a naturally occurring LMP1 variant has been identified as having a 10-amino acid deletion in the C-terminus that seems to confer greater transformation potential than non-deleted LMP1. The role of LMP1 as a viral oncogene and its interaction with cellular factors are discussed.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004854 Herpesvirus 4, Human The type species of LYMPHOCRYPTOVIRUS, subfamily GAMMAHERPESVIRINAE, infecting B-cells in humans. It is thought to be the causative agent of INFECTIOUS MONONUCLEOSIS and is strongly associated with oral hairy leukoplakia (LEUKOPLAKIA, HAIRY;), BURKITT LYMPHOMA; and other malignancies. Burkitt Herpesvirus,Burkitt Lymphoma Virus,E-B Virus,EBV,Epstein-Barr Virus,Human Herpesvirus 4,Infectious Mononucleosis Virus,Burkitt's Lymphoma Virus,HHV-4,Herpesvirus 4 (gamma), Human,Burkitts Lymphoma Virus,E B Virus,E-B Viruses,Epstein Barr Virus,Herpesvirus, Burkitt,Infectious Mononucleosis Viruses,Lymphoma Virus, Burkitt,Mononucleosis Virus, Infectious,Mononucleosis Viruses, Infectious
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000956 Antigens, Viral Substances elaborated by viruses that have antigenic activity. Viral Antigen,Viral Antigens,Antigen, Viral
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D014763 Viral Matrix Proteins Proteins associated with the inner surface of the lipid bilayer of the viral envelope. These proteins have been implicated in control of viral transcription and may possibly serve as the "glue" that binds the nucleocapsid to the appropriate membrane site during viral budding from the host cell. Membrane Proteins, Viral,Viral M Proteins,Viral M Protein,Viral Membrane Proteins

Related Publications

Hsin-Pai Li, and Yu-Sun Chang
April 2003, Journal of virology,
Hsin-Pai Li, and Yu-Sun Chang
August 2021, JCO global oncology,
Hsin-Pai Li, and Yu-Sun Chang
October 1994, The Journal of general virology,
Hsin-Pai Li, and Yu-Sun Chang
May 2007, Trends in immunology,
Hsin-Pai Li, and Yu-Sun Chang
November 2003, Oncogene,
Hsin-Pai Li, and Yu-Sun Chang
February 2006, British journal of haematology,
Hsin-Pai Li, and Yu-Sun Chang
September 2009, African health sciences,
Hsin-Pai Li, and Yu-Sun Chang
January 2007, Intervirology,
Copied contents to your clipboard!