Elongation by RNA polymerase II on chromatin templates requires topoisomerase activity. 2003

Neelima Mondal, and Ye Zhang, and Zophonias Jonsson, and Suman Kumar Dhar, and Madhu Kannapiran, and Jeffrey D Parvin
Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.

Transcription on chromatin by RNA polymerase II (pol II) is repressed as compared with transcription on histone-free DNA. In this study, we show that human topoisomerase I (topo I) and yeast topoisomerase II (topo II), each of which relax both positive and negative superhelical tension, reverse the transcriptional repression by chromatin. In the presence of bacterial topo I, which can relax only negative superhelical tension, the transcription is repressed on chromatin templates. The data together show that the relaxation of positive superhelical tension by these enzymes was the key property required for RNA synthesis from chromatin templates. In the absence of topoisomerase, transcriptional repression on chromatin depended on RNA length. The synthesis of transcripts of 100 nt or shorter was unaffected by chromatin, but repression was apparent when the RNA transcript was 200 nt or longer. These findings suggest that transcription on chromatin templates results in the accumulation of positive superhelical tension by the elongating polymerase, which in turn inhibits further elongation in the absence of topoisomerase activity.

UI MeSH Term Description Entries
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009707 Nucleosomes The repeating structural units of chromatin, each consisting of approximately 200 base pairs of DNA wound around a protein core. This core is composed of the histones H2A, H2B, H3, and H4. Dinucleosomes,Polynucleosomes,Dinucleosome,Nucleosome,Polynucleosome
D002166 Camptothecin An alkaloid isolated from the stem wood of the Chinese tree, Camptotheca acuminata. This compound selectively inhibits the nuclear enzyme DNA TOPOISOMERASES, TYPE I. Several semisynthetic analogs of camptothecin have demonstrated antitumor activity. Camptothecine
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004250 DNA Topoisomerases, Type II DNA TOPOISOMERASES that catalyze ATP-dependent breakage of both strands of DNA, passage of the unbroken strands through the breaks, and rejoining of the broken strands. These enzymes bring about relaxation of the supercoiled DNA and resolution of a knotted circular DNA duplex. DNA Topoisomerase (ATP-Hydrolysing),DNA Topoisomerase II,DNA Topoisomerase II alpha,DNA Topoisomerase II beta,DNA Type 2 Topoisomerase,TOP2A Protein,TOP2B Protein,Topoisomerase II,Topoisomerase II alpha,Topoisomerase II beta,Type II DNA Topoisomerase,alpha, Topoisomerase II,beta, Topoisomerase II
D004264 DNA Topoisomerases, Type I DNA TOPOISOMERASES that catalyze ATP-independent breakage of one of the two strands of DNA, passage of the unbroken strand through the break, and rejoining of the broken strand. DNA Topoisomerases, Type I enzymes reduce the topological stress in the DNA structure by relaxing the superhelical turns and knotted rings in the DNA helix. DNA Nicking-Closing Protein,DNA Relaxing Enzyme,DNA Relaxing Protein,DNA Topoisomerase,DNA Topoisomerase I,DNA Topoisomerase III,DNA Topoisomerase III alpha,DNA Topoisomerase III beta,DNA Untwisting Enzyme,DNA Untwisting Protein,TOP3 Topoisomerase,TOP3alpha,TOPO IIIalpha,Topo III,Topoisomerase III,Topoisomerase III beta,Topoisomerase IIIalpha,Topoisomerase IIIbeta,DNA Nicking-Closing Proteins,DNA Relaxing Enzymes,DNA Type 1 Topoisomerase,DNA Untwisting Enzymes,DNA Untwisting Proteins,Topoisomerase I,Type I DNA Topoisomerase,III beta, Topoisomerase,III, DNA Topoisomerase,III, Topo,III, Topoisomerase,IIIalpha, TOPO,IIIalpha, Topoisomerase,IIIbeta, Topoisomerase,Topoisomerase III, DNA,Topoisomerase, TOP3,beta, Topoisomerase III
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D005047 Etoposide A semisynthetic derivative of PODOPHYLLOTOXIN that exhibits antitumor activity. Etoposide inhibits DNA synthesis by forming a complex with topoisomerase II and DNA. This complex induces breaks in double stranded DNA and prevents repair by topoisomerase II binding. Accumulated breaks in DNA prevent entry into the mitotic phase of cell division, and lead to cell death. Etoposide acts primarily in the G2 and S phases of the cell cycle. Demethyl Epipodophyllotoxin Ethylidine Glucoside,Celltop,Eposide,Eposin,Eto-GRY,Etomedac,Etopos,Etoposide Pierre Fabre,Etoposide Teva,Etoposide, (5S)-Isomer,Etoposide, (5a alpha)-Isomer,Etoposide, (5a alpha,9 alpha)-Isomer,Etoposide, alpha-D-Glucopyranosyl Isomer,Etoposido Ferrer Farma,Exitop,Lastet,NSC-141540,Onkoposid,Riboposid,Toposar,VP 16-213,VP-16,Vepesid,Vépéside-Sandoz,Eto GRY,Etoposide, alpha D Glucopyranosyl Isomer,NSC 141540,NSC141540,Teva, Etoposide,VP 16,VP 16 213,VP 16213,VP16,Vépéside Sandoz,alpha-D-Glucopyranosyl Isomer Etoposide
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell

Related Publications

Neelima Mondal, and Ye Zhang, and Zophonias Jonsson, and Suman Kumar Dhar, and Madhu Kannapiran, and Jeffrey D Parvin
September 2001, Nature,
Neelima Mondal, and Ye Zhang, and Zophonias Jonsson, and Suman Kumar Dhar, and Madhu Kannapiran, and Jeffrey D Parvin
September 2000, Nature,
Neelima Mondal, and Ye Zhang, and Zophonias Jonsson, and Suman Kumar Dhar, and Madhu Kannapiran, and Jeffrey D Parvin
January 2014, Transcription,
Neelima Mondal, and Ye Zhang, and Zophonias Jonsson, and Suman Kumar Dhar, and Madhu Kannapiran, and Jeffrey D Parvin
July 1988, The Journal of biological chemistry,
Neelima Mondal, and Ye Zhang, and Zophonias Jonsson, and Suman Kumar Dhar, and Madhu Kannapiran, and Jeffrey D Parvin
July 1992, The Journal of biological chemistry,
Neelima Mondal, and Ye Zhang, and Zophonias Jonsson, and Suman Kumar Dhar, and Madhu Kannapiran, and Jeffrey D Parvin
January 1986, The EMBO journal,
Neelima Mondal, and Ye Zhang, and Zophonias Jonsson, and Suman Kumar Dhar, and Madhu Kannapiran, and Jeffrey D Parvin
December 1992, Genes & development,
Neelima Mondal, and Ye Zhang, and Zophonias Jonsson, and Suman Kumar Dhar, and Madhu Kannapiran, and Jeffrey D Parvin
April 1992, Molecular and cellular biology,
Neelima Mondal, and Ye Zhang, and Zophonias Jonsson, and Suman Kumar Dhar, and Madhu Kannapiran, and Jeffrey D Parvin
April 2003, Current opinion in genetics & development,
Neelima Mondal, and Ye Zhang, and Zophonias Jonsson, and Suman Kumar Dhar, and Madhu Kannapiran, and Jeffrey D Parvin
January 2010, Annual review of biochemistry,
Copied contents to your clipboard!