Transfer of arachidonic acid from lymphocytes to macrophages. 2003

C M Peres, and S C Sampaio, and Y Cury, and P Newsholme, and R Curi
Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil. carmem@fisio.icb.usp.br

The incorporation and oxidation of arachidonic acid (AA) by rat lymphocytes (LY), the transfer of AA from LY to rat macrophages (Mphi) in co-culture, and the subsequent functional impact on Mphi phagocytosis were investigated. The rate of incorporation of [1-14C]AA by untreated-LY and TG (thioglycolate treated)-LY (TG-LY) was 158 +/- 8 nmol/10(10) LY per h for both untreated-LY and TG-LY. The oxidation of AA was 3.4-fold higher in TG-LY as compared with untreated cells. LY from TG-injected rats had a 2.5-fold increase in the oxidation of palmitic (PA), oleic (OA), and linoleic (LA) acids. After 6 h of incubation, [14C] from AA was distributed mainly into phospholipids. The rate of incorporation into total lipids was 1071 nmol/10(10) cells in untreated-LY and 636 nmol/10(10) cells in TG-LY. [14C]AA was transferred from LY to co-cultured Mphi in substantial amounts (8.7 nmol for untreated and 15 nmol per 10(10) for TG cells). Exogenously added AA, PA, OA, and LA caused a significant reduction of phagocytosis by resident cells. Mphi co-cultured with AA-preloaded LY showed a significant reduction of the phagocytic capacity (about 40% at 35 microM). LY preloaded with PA, LA, and OA also induced a reduction in phagocytic capacity of co-cultured Mphi. TG treatment abolished the AA-induced inhibition of phagocytosis in Mphi co-cultured with TG-LY. Therefore, the transfer of AA between leukocytes is a modulated process and may play an important role in controlling inflammatory and immune response.

UI MeSH Term Description Entries
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D002247 Carbon Isotopes Stable carbon atoms that have the same atomic number as the element carbon but differ in atomic weight. C-13 is a stable carbon isotope. Carbon Isotope,Isotope, Carbon,Isotopes, Carbon
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002855 Chromatography, Thin Layer Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Thin-Layer,Thin Layer Chromatography,Chromatographies, Thin Layer,Chromatographies, Thin-Layer,Thin Layer Chromatographies,Thin-Layer Chromatographies,Thin-Layer Chromatography
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D013864 Thioglycolates Organic esters of thioglycolic acid (HS-CH2COOH). Thioglycollates
D016718 Arachidonic Acid An unsaturated, essential fatty acid. It is found in animal and human fat as well as in the liver, brain, and glandular organs, and is a constituent of animal phosphatides. It is formed by the synthesis from dietary linoleic acid and is a precursor in the biosynthesis of prostaglandins, thromboxanes, and leukotrienes. (all-Z)-5,8,11,14-Eicosatetraenoic acid,Arachidonic Acid, (all-Z)-Isomer, 1-(14)C-Labeled,Arachidonic Acid, (all-Z)-isomer, 3H-Labeled,Arachidonic Acid, Ammonium Salt, (all-Z)-Isomer,Arachidonic Acid, Cerium Salt, (all-Z)-Isomer,Arachidonic Acid, Cesium Salt, (all-Z)-Isomer,Arachidonic Acid, Lithium Salt, (all-Z)-Isomer,Arachidonic Acid, Potassium Salt, (all-Z)-Isomer,Arachidonic Acid, Sodium Salt,Arachidonic Acid, Sodium Salt, (all-Z)-Isomer,Arachidonic Acid, Zinc Salt, (all-Z)-Isomer,Sodium Arachidonate,Vitamin F,Arachidonate, Sodium
D050356 Lipid Metabolism Physiological processes in biosynthesis (anabolism) and degradation (catabolism) of LIPIDS. Metabolism, Lipid

Related Publications

C M Peres, and S C Sampaio, and Y Cury, and P Newsholme, and R Curi
February 1982, The Journal of biological chemistry,
C M Peres, and S C Sampaio, and Y Cury, and P Newsholme, and R Curi
December 2003, Cell biochemistry and function,
C M Peres, and S C Sampaio, and Y Cury, and P Newsholme, and R Curi
February 1998, Biochemistry and molecular biology international,
C M Peres, and S C Sampaio, and Y Cury, and P Newsholme, and R Curi
July 1972, Annales de l'Institut Pasteur,
C M Peres, and S C Sampaio, and Y Cury, and P Newsholme, and R Curi
July 1972, Annales de l'Institut Pasteur,
C M Peres, and S C Sampaio, and Y Cury, and P Newsholme, and R Curi
September 1987, Thrombosis research,
C M Peres, and S C Sampaio, and Y Cury, and P Newsholme, and R Curi
May 1997, Biochemical Society transactions,
C M Peres, and S C Sampaio, and Y Cury, and P Newsholme, and R Curi
January 1988, Progress in allergy,
C M Peres, and S C Sampaio, and Y Cury, and P Newsholme, and R Curi
June 1979, The Journal of experimental medicine,
C M Peres, and S C Sampaio, and Y Cury, and P Newsholme, and R Curi
February 1982, The Journal of experimental medicine,
Copied contents to your clipboard!