A novel ADP-dependent DNA ligase from Aeropyrum pernix K1. 2003

Sung-Jong Jeon, and Kazuhiko Ishikawa
The Special Division for Human Life Technology, National Institute of Advanced Industrial Science and Technology (AIST Kansai), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan.

A gene encoding a putative ATP-dependent DNA ligase from the aerobic hyperthermophilic archaeon Aeropyrum pernix K1 was cloned and the biochemical characteristics of the resulting recombinant protein were examined. The gene (accession no. APE1094) from A. pernix encoding a 69-kDa protein showed a 39-61% identity with other ATP-dependent DNA ligases from the archaea. Normally DNA ligase is activated by NAD(+) or ATP. There has been no report about the other activators for DNA ligase. The recombinant ligase was a monomeric protein and catalyzed strand joining on a singly nicked DNA substrate in the presence of ADP and a divalent cation (Mg(2+), Mn(2+), Ca(2+) and Co(2+)) at high temperature. The optimum temperature and pH for nick-closing activity were above 70 degrees C and 7.5 degrees C, respectively. The ligase remained stable for 60 min of treatment at 100 degrees C, and the half-life was about 25 min at 110 degrees C. This is the first report of a novel hyperthermostable DNA ligase that can utilize ADP to activate the enzyme.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011088 DNA Ligases Poly(deoxyribonucleotide):poly(deoxyribonucleotide)ligases. Enzymes that catalyze the joining of preformed deoxyribonucleotides in phosphodiester linkage during genetic processes during repair of a single-stranded break in duplex DNA. The class includes both EC 6.5.1.1 (ATP) and EC 6.5.1.2 (NAD). DNA Joinases,DNA Ligase,Polydeoxyribonucleotide Ligases,Polydeoxyribonucleotide Synthetases,T4 DNA Ligase,DNA Ligase, T4,Joinases, DNA,Ligase, DNA,Ligase, T4 DNA,Ligases, DNA,Ligases, Polydeoxyribonucleotide,Synthetases, Polydeoxyribonucleotide
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D002412 Cations Positively charged atoms, radicals or groups of atoms which travel to the cathode or negative pole during electrolysis. Cation
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004795 Enzyme Stability The extent to which an enzyme retains its structural conformation or its activity when subjected to storage, isolation, and purification or various other physical or chemical manipulations, including proteolytic enzymes and heat. Enzyme Stabilities,Stabilities, Enzyme,Stability, Enzyme
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

Sung-Jong Jeon, and Kazuhiko Ishikawa
June 2004, Protein expression and purification,
Sung-Jong Jeon, and Kazuhiko Ishikawa
April 2003, Journal of bacteriology,
Sung-Jong Jeon, and Kazuhiko Ishikawa
October 2021, Microbiology spectrum,
Sung-Jong Jeon, and Kazuhiko Ishikawa
January 2012, PloS one,
Sung-Jong Jeon, and Kazuhiko Ishikawa
September 2016, Extremophiles : life under extreme conditions,
Sung-Jong Jeon, and Kazuhiko Ishikawa
August 2004, Structure (London, England : 1993),
Sung-Jong Jeon, and Kazuhiko Ishikawa
April 2005, Journal of molecular biology,
Sung-Jong Jeon, and Kazuhiko Ishikawa
May 2005, Archaea (Vancouver, B.C.),
Sung-Jong Jeon, and Kazuhiko Ishikawa
March 2012, The Journal of biological chemistry,
Copied contents to your clipboard!