Glass ionomer cements as luting agents for orthodontic brackets. 2003

K S Coups-Smith, and P E Rossouw, and K C Titley
University of Toronto, Ontario.

The objectives of the present study were to (1) assess the shear bond strengths of resin-reinforced glass ionomer Fuji Ortho LC and GC Fuji Ortho cements under differing conditions and (2) compare their bonding performance with that of conventional resin composite bonding systems. A sample of 264 bovine incisors was divided into 22 groups of 12 teeth each and bonded with SPEED central incisor brackets. Enamel surfaces of the teeth in the two experimental groups were conditioned according to the manufacturer's instructions; moreover, groups unconditioned before bonding were also included under both wet and dry conditions. A self-cure composite resin (Phase II) and a light-cure composite resin (Transbond XT) served as controls and were etched with 37% phosphoric acid and bonded in a dry field. After incubation at 37 degrees C for 24 hours and for seven days, the specimens were tested to failure with a shear force in an Instron machine. The Adhesive Remnant Index (ARI) was used to assess the amount of resin left on the enamel surfaces after debonding. Selected specimens were examined using scanning electron microscopy. Statistical analyses included analysis of variance tests, t-tests, and correlation coefficient calculations and showed that no significant difference existed between the glass ionomer cements under wet or dry conditions, provided the enamel was conditioned with 10% polyacrylic acid before bonding. Both glass ionomer cements were thus acceptable for bonding. Transbond XT had the highest mean shear bond strength irrespective of the incubation period. A positive correlation was obtained between the ARI scores and bond strength.

UI MeSH Term Description Entries
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D010756 Phosphoric Acids Inorganic derivatives of phosphoric acid (H3PO4). Note that organic derivatives of phosphoric acids are listed under ORGANOPHOSPHATES. Pyrophosphoric Acids,Acids, Phosphoric,Acids, Pyrophosphoric
D001840 Dental Bonding An adhesion procedure for orthodontic attachments, such as plastic DENTAL CROWNS. This process usually includes the application of an adhesive material (DENTAL CEMENTS) and letting it harden in-place by light or chemical curing. Bonding, Dental,Cure of Orthodontic Adhesives,Curing, Dental Cement,Dental Cement Curing,Orthodontic Adhesives Cure
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003188 Composite Resins Synthetic resins, containing an inert filler, that are widely used in dentistry. Composite Resin,Resin, Composite,Resins, Composite
D003743 Dental Enamel A hard thin translucent layer of calcified substance which envelops and protects the dentin of the crown of the tooth. It is the hardest substance in the body and is almost entirely composed of calcium salts. Under the microscope, it is composed of thin rods (enamel prisms) held together by cementing substance, and surrounded by an enamel sheath. (From Jablonski, Dictionary of Dentistry, 1992, p286) Enamel,Enamel Cuticle,Dental Enamels,Enamel, Dental,Enamels, Dental,Cuticle, Enamel,Cuticles, Enamel,Enamel Cuticles,Enamels
D005899 Glass Ionomer Cements A polymer obtained by reacting polyacrylic acid with a special anion-leachable glass (alumino-silicate). The resulting cement is more durable and tougher than others in that the materials comprising the polymer backbone do not leach out. Glass Ionomer Cement,Glass Polyalkenoate Cement,Polyalkenoate Cement,Polyalkenoate Cements,Glass Polyalkenoate Cements,Glass-Ionomer Cement,Cement, Glass Ionomer,Cement, Glass Polyalkenoate,Cement, Glass-Ionomer,Cement, Polyalkenoate,Cements, Glass Ionomer,Cements, Glass Polyalkenoate,Cements, Glass-Ionomer,Cements, Polyalkenoate,Glass-Ionomer Cements,Ionomer Cement, Glass,Polyalkenoate Cement, Glass
D000134 Acid Etching, Dental Preparation of TOOTH surfaces and DENTAL MATERIALS with etching agents, usually phosphoric acid, to roughen the surface to increase adhesion or osteointegration. Dental Acid Etching,Etching, Dental Acid
D000180 Acrylic Resins Polymers of high molecular weight which are derived from acrylic acid, methacrylic acid or other related compounds and are capable of being molded and then hardened to form useful components. Acrylic Resin,Resin, Acrylic,Resins, Acrylic
D000538 Aluminum Silicates Any of the numerous types of clay which contain varying proportions of Al2O3 and SiO2. They are made synthetically by heating aluminum fluoride at 1000-2000 degrees C with silica and water vapor. (From Hawley's Condensed Chemical Dictionary, 11th ed) Aluminum Silicate,Silicate, Aluminum,Silicates, Aluminum

Related Publications

K S Coups-Smith, and P E Rossouw, and K C Titley
February 1977, British dental journal,
K S Coups-Smith, and P E Rossouw, and K C Titley
August 1984, Virginia dental journal,
K S Coups-Smith, and P E Rossouw, and K C Titley
January 1985, The Journal of the Michigan Dental Association,
K S Coups-Smith, and P E Rossouw, and K C Titley
April 1983, Scandinavian journal of dental research,
K S Coups-Smith, and P E Rossouw, and K C Titley
June 1991, European journal of orthodontics,
K S Coups-Smith, and P E Rossouw, and K C Titley
May 1991, Praktische Kieferorthopadie,
K S Coups-Smith, and P E Rossouw, and K C Titley
July 1989, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics,
K S Coups-Smith, and P E Rossouw, and K C Titley
January 2018, Brazilian dental journal,
K S Coups-Smith, and P E Rossouw, and K C Titley
January 1995, Journal of esthetic dentistry,
K S Coups-Smith, and P E Rossouw, and K C Titley
February 2003, Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons,
Copied contents to your clipboard!