Osmosensitive properties of rapid and slow delayed rectifier K+ currents in guinea-pig heart cells. 2003

Toshitsugu Ogura, and Hiroyuki Matsuda, and Toshishige Shibamoto, and Sunao Imanishi
Second Department of Physiology, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Kahoku-gun, Ishikawa-ken 920-0293, Japan. physiol2@kanazawa-med.ac.jp

1. Changes in cell volume affect a variety of sarcolemmal transport processes in the heart. To study whether osmotically induced cell volume shrinkage has functional consequences for K+ channel activity, guinea-pig cardiac preparations were superfused with hyperosmotic Tyrode's solution (1.2-2-fold normal osmolality). Membrane currents and cell surface dimensions were measured from whole-cell patch-clamped ventricular myocytes and membrane potentials were recorded from isolated ventricular muscles and non-patched myocytes. 2. Hyperosmotic treatment of myocytes quickly (< 3 min to steady state) shrank cell volume (approximately 20% reduction in 1.5-fold hyperosmotic solution) and depressed the delayed rectifier K+ current (IK). Analysis using different activation protocols and a selective inhibitor (5 micro mol/L E4031) indicated that the IK inhibition was due to osmolality and cell volume-dependent changes in the two subtypes of the classical cardiac IK (rapidly activating IKr and slowly activating IKs); 1.5-fold hyperosmotic treatment depressed the amplitudes of IKr and IKs by approximately 30 and 50%, respectively. 3. Superfusion of muscles and myocytes with 1.5-fold hyperosmotic solution lengthened the action potentials by 14-17%. Hyperosmotic treatment also caused 6-7 mV hyperpolarization that is most likely due to a concentrating of intracellular K+. 4. The inhibition of IK helps explain the lengthening of action potentials observed in osmotically stressed heart cells. These results, together with the reported IK stimulation by hyposmotic cell swelling, provide further support for cell volume-sensitive properties of cardiac electrical activity.

UI MeSH Term Description Entries
D006982 Hypertonic Solutions Solutions that have a greater osmotic pressure than a reference solution such as blood, plasma, or interstitial fluid. Hypertonic Solution,Solution, Hypertonic,Solutions, Hypertonic
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010210 Papillary Muscles Conical muscular projections from the walls of the cardiac ventricles, attached to the cusps of the atrioventricular valves by the chordae tendineae. Muscle, Papillary,Muscles, Papillary,Papillary Muscle
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014882 Water-Electrolyte Balance The balance of fluid in the BODY FLUID COMPARTMENTS; total BODY WATER; BLOOD VOLUME; EXTRACELLULAR SPACE; INTRACELLULAR SPACE, maintained by processes in the body that regulate the intake and excretion of WATER and ELECTROLYTES, particularly SODIUM and POTASSIUM. Fluid Balance,Electrolyte Balance,Balance, Electrolyte,Balance, Fluid,Balance, Water-Electrolyte,Water Electrolyte Balance
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel
D032383 Myocytes, Cardiac Striated muscle cells found in the heart. They are derived from cardiac myoblasts (MYOBLASTS, CARDIAC). Cardiomyocytes,Muscle Cells, Cardiac,Muscle Cells, Heart,Cardiac Muscle Cell,Cardiac Muscle Cells,Cardiac Myocyte,Cardiac Myocytes,Cardiomyocyte,Cell, Cardiac Muscle,Cell, Heart Muscle,Cells, Cardiac Muscle,Cells, Heart Muscle,Heart Muscle Cell,Heart Muscle Cells,Muscle Cell, Cardiac,Muscle Cell, Heart,Myocyte, Cardiac

Related Publications

Toshitsugu Ogura, and Hiroyuki Matsuda, and Toshishige Shibamoto, and Sunao Imanishi
December 2014, Journal of thoracic disease,
Toshitsugu Ogura, and Hiroyuki Matsuda, and Toshishige Shibamoto, and Sunao Imanishi
May 2014, Molecular medicine reports,
Toshitsugu Ogura, and Hiroyuki Matsuda, and Toshishige Shibamoto, and Sunao Imanishi
December 2021, Pflugers Archiv : European journal of physiology,
Toshitsugu Ogura, and Hiroyuki Matsuda, and Toshishige Shibamoto, and Sunao Imanishi
February 1991, The American journal of physiology,
Toshitsugu Ogura, and Hiroyuki Matsuda, and Toshishige Shibamoto, and Sunao Imanishi
July 1999, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
Toshitsugu Ogura, and Hiroyuki Matsuda, and Toshishige Shibamoto, and Sunao Imanishi
April 2000, The Journal of pharmacy and pharmacology,
Toshitsugu Ogura, and Hiroyuki Matsuda, and Toshishige Shibamoto, and Sunao Imanishi
February 2004, The Journal of physiology,
Toshitsugu Ogura, and Hiroyuki Matsuda, and Toshishige Shibamoto, and Sunao Imanishi
August 1994, European journal of pharmacology,
Toshitsugu Ogura, and Hiroyuki Matsuda, and Toshishige Shibamoto, and Sunao Imanishi
June 2006, The Journal of physiology,
Toshitsugu Ogura, and Hiroyuki Matsuda, and Toshishige Shibamoto, and Sunao Imanishi
November 1994, Circulation research,
Copied contents to your clipboard!