Acylation is rate-limiting in glycosylasparaginase-catalyzed hydrolysis of N4-(4'-substituted phenyl)-L-asparagines. 2003

Wenjun Du, and John M Risley
Department of Chemistry, The University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, North Carolina 28223-0001, USA.

Glycosylasparaginase catalyzes the hydrolysis of the N-glycosylic bond between N-acetyl-D-glucosamine and L-asparagine in the catabolism of glycoproteins. The mechanism has been proposed to resemble that of serine proteases involving an acylation step where a nucleophilic attack by a catalytic Thr residue on the carbonyl carbon of the N-glycosylic bond gives rise to a covalent beta-aspartyl-enzyme intermediate, and a deacylation step to give the final products. The question posed in this study was: Is the acylation step the rate-limiting step in the hydrolysis reaction as in serine proteases? To answer this question a series of mostly new substituted anilides was synthesized and characterized, and their hydrolysis reactions catalyzed by glycosylasparaginase from human amniotic fluid were studied. Five N4-(4'-substituted phenyl)-L-asparagine compounds were synthesized and characterized: 4'-hydrogen, 4'-ethyl, 4'-bromo, 4'-nitro, and 4'-methoxy. Each of these anilides was a substrate for the enzyme. Hammett plots of the kinetic parameters showed that acylation is the rate-limiting step in the reaction and that upon binding the electron distribution of the substrate is perturbed toward the transition state. This is the first direct evidence that acylation is the rate-limiting step in the enzyme-catalyzed reaction. A Brønsted plot indicates a small, negative charge (-0.25) on the nitrogen atom of the leaving group anilines containing electron-withdrawing groups, and a small, positive charge (0.43) on the nitrogen atom of the leaving group anilines containing electron-donating groups. The free energy (incremental) change of binding (delta deltaGb) in the enzyme-substrate transition state complexes shows that substitution of a substituted phenyl group for the pyranosyl group in the natural substrate results in an overall loss of binding energy equivalent to a weak hydrogen bond, the magnitude of which is dependent on the substituent group. The data are consistent with a mechanism for glycosylasparaginase involving rapid formation of a tetrahedral structure upon substrate binding, and a rate-limiting breakdown of the tetrahedral structure to a covalent beta-aspartyl-enzyme intermediate that is dependent on the electronic properties of the substituent group and on the degree of protonation of the leaving group in the transition state by a general acid.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D004583 Electrons Stable elementary particles having the smallest known negative charge, present in all elements; also called negatrons. Positively charged electrons are called positrons. The numbers, energies and arrangement of electrons around atomic nuclei determine the chemical identities of elements. Beams of electrons are called CATHODE RAYS. Fast Electrons,Negatrons,Positrons,Electron,Electron, Fast,Electrons, Fast,Fast Electron,Negatron,Positron
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006860 Hydrogen Bonding A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds. Hydrogen Bonds,Bond, Hydrogen,Hydrogen Bond
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000215 Acylation The addition of an organic acid radical into a molecule.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001216 Asparagine A non-essential amino acid that is involved in the metabolic control of cell functions in nerve and brain tissue. It is biosynthesized from ASPARTIC ACID and AMMONIA by asparagine synthetase. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed) L-Asparagine
D001227 Aspartylglucosylaminase An enzyme that catalyzes the conversion of N(4)-(beta-N-acetyl-D-glucosaminyl)-L-asparagine and water to N-acetyl-beta-D-glucosaminylamine and L-aspartate. It acts only on asparagine-oligosaccharides containing one amino acid, i.e. the ASPARAGINE has free alpha-amino and alpha-carboxyl groups. (From Enzyme Nomenclature, 1992) Aspartylglucosaminidase,Aspartylglucosylamine Deaspartylase,Aspartylglycosamine Amidohydrolase,Aspartylglucosamine Amidohydrolase,Glycosylasparaginase,Amidohydrolase, Aspartylglucosamine,Amidohydrolase, Aspartylglycosamine,Deaspartylase, Aspartylglucosylamine

Related Publications

Wenjun Du, and John M Risley
September 1973, Biochemical and biophysical research communications,
Wenjun Du, and John M Risley
October 1998, The Journal of biological chemistry,
Wenjun Du, and John M Risley
July 1997, FEBS letters,
Wenjun Du, and John M Risley
October 1970, Journal of the American Chemical Society,
Wenjun Du, and John M Risley
September 1970, Die Pharmazie,
Wenjun Du, and John M Risley
January 1975, Journal of the American Chemical Society,
Wenjun Du, and John M Risley
January 1950, The Biochemical journal,
Wenjun Du, and John M Risley
January 1973, Nature: New biology,
Wenjun Du, and John M Risley
August 1966, Die Pharmazie,
Copied contents to your clipboard!