Effects of troponin on thermal unfolding of actin-bound tropomyosin. 2003

E V Kremneva, and O P Nikolaeva, and N B Gusev, and D I Levitsky
Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia. EVKremneva@mail.ru

Differential scanning calorimetry (DSC) was used to study the effect of troponin (Tn) and its isolated components on the thermal unfolding of skeletal muscle tropomyosin (Tm) bound to F-actin. It is shown that in the absence of actin the thermal unfolding of Tm is expressed in two well-distinguished thermal transitions with maxima at 42.8 and 53.8 degrees C. Interaction with F-actin affects the character of thermal unfolding of Tm leading to appearance of a new Tm transition with maximum at about 48 degrees C, but it has no influence on the thermal denaturation of F-actin stabilized by aluminum fluoride, which occurs within the temperature region above 70 degrees C. Addition of troponin leads to significant increase in the cooperativity and enthalpy of the thermal transition of the actin-bound Tm. The most pronounced effect of Tn was observed in the absence of calcium. To elucidate how troponin complex affects the properties of Tm, we studied the influence of its isolated components, troponin I (TnI) and troponin T (TnT), on the thermal unfolding of actin-bound Tm. Isolated TnT and TnI do not demonstrate cooperative thermal transitions on heating up to 100 degrees C. However, addition of TnI, and especially of TnT, to the F-actin-Tm complex significantly increased the cooperativity of the thermal unfolding of actin-bound tropomyosin.

UI MeSH Term Description Entries
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002152 Calorimetry, Differential Scanning Differential thermal analysis in which the sample compartment of the apparatus is a differential calorimeter, allowing an exact measure of the heat of transition independent of the specific heat, thermal conductivity, and other variables of the sample. Differential Thermal Analysis, Calorimetric,Calorimetric Differential Thermal Analysis,Differential Scanning Calorimetry,Scanning Calorimetry, Differential
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic
D014335 Tropomyosin A protein found in the thin filaments of muscle fibers. It inhibits contraction of the muscle unless its position is modified by TROPONIN. Paramyosin,Miniparamyosin,Paratropomyosin,Tropomyosin Mg,alpha-Tropomyosin,beta-Tropomyosin,gamma-Tropomyosin,Mg, Tropomyosin,alpha Tropomyosin,beta Tropomyosin,gamma Tropomyosin
D014336 Troponin One of the minor protein components of skeletal and cardiac muscles. It functions as the calcium-binding component in a complex with BETA-TROPOMYOSIN; ACTIN; and MYOSIN and confers calcium sensitivity to the cross-linked actin and myosin filaments. Troponin itself is a complex of three regulatory proteins (TROPONIN C; TROPONIN I; and TROPONIN T). Troponin Complex,Troponins

Related Publications

E V Kremneva, and O P Nikolaeva, and N B Gusev, and D I Levitsky
April 1975, Journal of molecular biology,
E V Kremneva, and O P Nikolaeva, and N B Gusev, and D I Levitsky
January 2009, Biophysical journal,
E V Kremneva, and O P Nikolaeva, and N B Gusev, and D I Levitsky
September 1981, Biochemistry,
E V Kremneva, and O P Nikolaeva, and N B Gusev, and D I Levitsky
June 1983, Biochemistry,
E V Kremneva, and O P Nikolaeva, and N B Gusev, and D I Levitsky
May 1983, Biochemistry,
E V Kremneva, and O P Nikolaeva, and N B Gusev, and D I Levitsky
August 1992, The Journal of biological chemistry,
E V Kremneva, and O P Nikolaeva, and N B Gusev, and D I Levitsky
October 1997, The Biochemical journal,
E V Kremneva, and O P Nikolaeva, and N B Gusev, and D I Levitsky
July 2009, PloS one,
E V Kremneva, and O P Nikolaeva, and N B Gusev, and D I Levitsky
August 1972, Journal of biochemistry,
E V Kremneva, and O P Nikolaeva, and N B Gusev, and D I Levitsky
December 1972, Biochimica et biophysica acta,
Copied contents to your clipboard!