Presynaptic kainate receptors impart an associative property to hippocampal mossy fiber long-term potentiation. 2003

Dietmar Schmitz, and Jack Mellor, and Joerg Breustedt, and Roger A Nicoll
Neuroscience Research Center, Charité, Humboldt-University Berlin, Schumannstr. 20/21, 10117 Berlin, Germany.

Hippocampal mossy fiber synapses show an unusual form of long-term potentiation (LTP) that is independent of NMDA receptor activation and is expressed presynaptically. Using receptor antagonists, as well as receptor knockout mice, we found that presynaptic kainate receptors facilitate the induction of mossy fiber long-term potentiation (LTP), although they are not required for this form of LTP. Most importantly, these receptors impart an associativity to mossy fiber LTP such that activity in neighboring mossy fiber synapses, or even associational/commissural synapses, influences the threshold for inducing mossy fiber LTP. Such a mechanism greatly increases the computational power of this form of plasticity.

UI MeSH Term Description Entries
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000097806 GluK2 Kainate Receptor A high-affinity KAINATE and GLUTAMATE receptor that functions as ligand-gated ion channel in the CENTRAL NERVOUS SYSYEM and plays an essential role in NEURONAL PLASTICITY. GluR6 Kainate Receptor,GluR6 Kainate Receptors,GluR6 Receptor,Ionotropic Glutamate Receptor GluR6,Receptor, GluK2 Kainate,Receptor, GluR6,Receptor, GluR6 Kainate,Receptors, GluR6 Kainate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017729 Presynaptic Terminals The distal terminations of axons which are specialized for the release of neurotransmitters. Also included are varicosities along the course of axons which have similar specializations and also release transmitters. Presynaptic terminals in both the central and peripheral nervous systems are included. Axon Terminals,Nerve Endings, Presynaptic,Synaptic Boutons,Synaptic Terminals,Axon Terminal,Bouton, Synaptic,Boutons, Synaptic,Ending, Presynaptic Nerve,Endings, Presynaptic Nerve,Nerve Ending, Presynaptic,Presynaptic Nerve Ending,Presynaptic Nerve Endings,Presynaptic Terminal,Synaptic Bouton,Synaptic Terminal,Terminal, Axon,Terminal, Presynaptic,Terminal, Synaptic,Terminals, Axon,Terminals, Presynaptic,Terminals, Synaptic
D017774 Long-Term Potentiation A persistent increase in synaptic efficacy, usually induced by appropriate activation of the same synapses. The phenomenological properties of long-term potentiation suggest that it may be a cellular mechanism of learning and memory. Long Term Potentiation,Long-Term Potentiations,Potentiation, Long-Term,Potentiations, Long-Term

Related Publications

Dietmar Schmitz, and Jack Mellor, and Joerg Breustedt, and Roger A Nicoll
December 2002, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Dietmar Schmitz, and Jack Mellor, and Joerg Breustedt, and Roger A Nicoll
August 2000, Neuron,
Dietmar Schmitz, and Jack Mellor, and Joerg Breustedt, and Roger A Nicoll
October 1994, Proceedings of the National Academy of Sciences of the United States of America,
Dietmar Schmitz, and Jack Mellor, and Joerg Breustedt, and Roger A Nicoll
January 2008, Neuron,
Dietmar Schmitz, and Jack Mellor, and Joerg Breustedt, and Roger A Nicoll
June 1991, Neuroreport,
Dietmar Schmitz, and Jack Mellor, and Joerg Breustedt, and Roger A Nicoll
April 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
Dietmar Schmitz, and Jack Mellor, and Joerg Breustedt, and Roger A Nicoll
August 1996, Science (New York, N.Y.),
Dietmar Schmitz, and Jack Mellor, and Joerg Breustedt, and Roger A Nicoll
November 1992, The Journal of pharmacology and experimental therapeutics,
Dietmar Schmitz, and Jack Mellor, and Joerg Breustedt, and Roger A Nicoll
September 1994, Science (New York, N.Y.),
Copied contents to your clipboard!