Expression of photoreceptor-associated molecules during human fetal eye development. 2003

Keely M Bumsted O'Brien, and Dorothea Schulte, and Anita E Hendrickson
Max Planck Institute for Brain Research, Department of Neuroanatomy, Frankfurt am Main, Germany. k.bumsted@auckland.ac.nz

OBJECTIVE A characteristic feature of the human retina is the early differentiation of foveal cells followed by a central to peripheral wave of maturation. This can obscure the true onset of differentiation when regions other that the fovea are sampled, or when methods based on whole retina or whole eye tissue are employed, such as reverse transcription-polymerase chain technique (RT-PCR). In order to assess the suitability of RT-PCR based approaches during human retinal development and to gain insight into the developmental progression of photoreceptor differentiation and maturation in the human, we analyzed the expression of several photoreceptor-associated genes by immunocytochemical labeling (ICC) of the foveal region as well as by RT-PCR of total RNA from whole fetal eyes from different developmental stages. METHODS Expression of phosphodiesterase beta (PDEB), interphotoreceptor binding protein (IRBP), tubby-like protein (TULP), short wavelength specific (S) opsin, long and medium wavelength specific (L/M) opsin, rod opsin and the transcription factors Crx and Nrl were assessed by RT-PCR from total RNA prepared from snap frozen intact human fetal eyes ranging from fetal week 9 (Fwk 9) to Fwk 18. ICC labeling was performed in a large number of eyes within an age group for IRBP, TULP, Nrl, S opsin, L/M opsin and rod opsin on frozen sections that included the fovea centralis. RESULTS All ICC markers appeared first in or around the fovea. We detected PDEB and Crx expression as early as Fwk 10, by RT-PCR. TULP and IRBP were first observed with ICC in a small number of foveal cones at Fwk 9, although the first transcripts were not detected until Fwk 12. Nrl-positive nuclei appeared around the fovea by Fwk 11 and S opsin-positive cones by Fwk 12. L/M opsin-positive cones and rod opsin-positive rods were first detected between Fwk 15-16. In general, ICC labeling in the fovea was present for most genes up to 2 weeks before the corresponding transcripts could be successfully amplified by RT-PCR from whole eye tissue. CONCLUSIONS Our results indicate that in order to pinpoint exactly when and where a molecule appears, ICC labeling of the fovea is a more reliable indicator. RT-PCR was prone to underestimate the exact onset of expression of the molecules tested, yet it faithfully recapitulated the sequence in which they appeared. In addition, our data show that in the human fetal retina, Crx and Nrl are both expressed when the first rod photoreceptors are being generated. This agrees well with previous in vitro results suggesting a synergistic action of both proteins during differentiation of human rod photoreceptors.

UI MeSH Term Description Entries
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D005136 Eye Proteins PROTEINS derived from TISSUES of the EYE. Proteins, Eye
D005314 Embryonic and Fetal Development Morphological and physiological development of EMBRYOS or FETUSES. Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015415 Biomarkers Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, ENVIRONMENTAL EXPOSURE and its effects, disease diagnosis; METABOLIC PROCESSES; SUBSTANCE ABUSE; PREGNANCY; cell line development; EPIDEMIOLOGIC STUDIES; etc. Biochemical Markers,Biological Markers,Biomarker,Clinical Markers,Immunologic Markers,Laboratory Markers,Markers, Biochemical,Markers, Biological,Markers, Clinical,Markers, Immunologic,Markers, Laboratory,Markers, Serum,Markers, Surrogate,Markers, Viral,Serum Markers,Surrogate Markers,Viral Markers,Biochemical Marker,Biologic Marker,Biologic Markers,Clinical Marker,Immune Marker,Immune Markers,Immunologic Marker,Laboratory Marker,Marker, Biochemical,Marker, Biological,Marker, Clinical,Marker, Immunologic,Marker, Laboratory,Marker, Serum,Marker, Surrogate,Serum Marker,Surrogate End Point,Surrogate End Points,Surrogate Endpoint,Surrogate Endpoints,Surrogate Marker,Viral Marker,Biological Marker,End Point, Surrogate,End Points, Surrogate,Endpoint, Surrogate,Endpoints, Surrogate,Marker, Biologic,Marker, Immune,Marker, Viral,Markers, Biologic,Markers, Immune
D018507 Gene Expression Regulation, Developmental Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism. Developmental Gene Expression Regulation,Embryologic Gene Expression Regulation,Gene Expression Regulation, Embryologic,Regulation of Gene Expression, Developmental,Regulation of Gene Expression, Embryologic,Regulation, Gene Expression, Developmental,Regulation, Gene Expression, Embryologic
D019084 Fluorescent Antibody Technique, Indirect A form of fluorescent antibody technique commonly used to detect serum antibodies and immune complexes in tissues and microorganisms in specimens from patients with infectious diseases. The technique involves formation of an antigen-antibody complex which is labeled with fluorescein-conjugated anti-immunoglobulin antibody. (From Bennington, Saunders Dictionary & Encyclopedia of Laboratory Medicine and Technology, 1984) Immunofluorescence Antibody Test, Indirect,Immunofluorescence Technique, Indirect,Fluorescent Antibody Technic, Indirect,Immunofluorescence Technic, Indirect,Indirect Fluorescent Antibody Technic,Indirect Fluorescent Antibody Technique,Indirect Immunofluorescence,Indirect Immunofluorescence Assay,Assay, Indirect Immunofluorescence,Assays, Indirect Immunofluorescence,Immunofluorescence Assay, Indirect,Immunofluorescence Assays, Indirect,Immunofluorescence Technics, Indirect,Immunofluorescence Techniques, Indirect,Immunofluorescence, Indirect,Immunofluorescences, Indirect,Indirect Immunofluorescence Assays,Indirect Immunofluorescence Technic,Indirect Immunofluorescence Technics,Indirect Immunofluorescence Technique,Indirect Immunofluorescence Techniques,Indirect Immunofluorescences
D020133 Reverse Transcriptase Polymerase Chain Reaction A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols. Polymerase Chain Reaction, Reverse Transcriptase,Reverse Transcriptase PCR,PCR, Reverse Transcriptase,Transcriptase PCR, Reverse
D020419 Photoreceptor Cells, Vertebrate Specialized PHOTOTRANSDUCTION neurons in the vertebrates, such as the RETINAL ROD CELLS and the RETINAL CONE CELLS. Non-visual photoreceptor neurons have been reported in the deep brain, the PINEAL GLAND and organs of the circadian system. Retinal Photoreceptor Cells,Rods and Cones,Photoreceptors, Retinal,Photoreceptors, Vertebrate,Retinal Photoreceptors,Vertebrate Photoreceptor Cells,Vertebrate Photoreceptors,Cell, Retinal Photoreceptor,Cell, Vertebrate Photoreceptor,Cells, Retinal Photoreceptor,Cells, Vertebrate Photoreceptor,Cones and Rods,Photoreceptor Cell, Retinal,Photoreceptor Cell, Vertebrate,Photoreceptor Cells, Retinal,Photoreceptor, Retinal,Photoreceptor, Vertebrate,Retinal Photoreceptor,Retinal Photoreceptor Cell,Vertebrate Photoreceptor,Vertebrate Photoreceptor Cell

Related Publications

Keely M Bumsted O'Brien, and Dorothea Schulte, and Anita E Hendrickson
January 2004, Investigative ophthalmology & visual science,
Keely M Bumsted O'Brien, and Dorothea Schulte, and Anita E Hendrickson
August 2020, Histology and histopathology,
Keely M Bumsted O'Brien, and Dorothea Schulte, and Anita E Hendrickson
October 1995, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
Keely M Bumsted O'Brien, and Dorothea Schulte, and Anita E Hendrickson
December 1997, Brain research. Developmental brain research,
Keely M Bumsted O'Brien, and Dorothea Schulte, and Anita E Hendrickson
February 1995, International immunology,
Keely M Bumsted O'Brien, and Dorothea Schulte, and Anita E Hendrickson
October 2006, Zhonghua nan ke xue = National journal of andrology,
Keely M Bumsted O'Brien, and Dorothea Schulte, and Anita E Hendrickson
August 2002, Pediatric research,
Keely M Bumsted O'Brien, and Dorothea Schulte, and Anita E Hendrickson
June 1992, Visual neuroscience,
Keely M Bumsted O'Brien, and Dorothea Schulte, and Anita E Hendrickson
July 1994, Neuromuscular disorders : NMD,
Keely M Bumsted O'Brien, and Dorothea Schulte, and Anita E Hendrickson
January 1990, Acta histochemica,
Copied contents to your clipboard!