Dorsal root entry zone stimulation for deafferentation pain. 1992

R P Iacono, and A N Guthkelch, and M V Boswell
Department of Surgery (Neurosurgery), Loma Linda University, Calif.

Dorsal root entry zone (DREZ) stimulation was performed in 12 patients with chronic pain syndromes after extensive trials of medical therapy, sympathectomy or peripheral nerve stimulation had failed, with 50% of them obtaining excellent long-term benefit. Evoked potential monitoring to facilitate positioning of electrodes under either general or spinal anesthesia, and postoperatively to explore the mechanism of action, revealed findings distinct from those reported with conventional spinal cord stimulation (SCS). DREZ stimulation may function on a different neurophysiologic basis than conventional SCS, involving intersegmental processing and influencing tract of Lissauer functions or the dorsal horn directly.

UI MeSH Term Description Entries
D008475 Median Nerve A major nerve of the upper extremity. In humans, the fibers of the median nerve originate in the lower cervical and upper thoracic spinal cord (usually C6 to T1), travel via the brachial plexus, and supply sensory and motor innervation to parts of the forearm and hand. Median Nerves,Nerve, Median,Nerves, Median
D010148 Pain, Intractable Persistent pain that is refractory to some or all forms of treatment. Refractory Pain,Intractable Pain,Intractable Pains,Pain, Refractory,Pains, Intractable,Pains, Refractory,Refractory Pains
D002908 Chronic Disease Diseases which have one or more of the following characteristics: they are permanent, leave residual disability, are caused by nonreversible pathological alteration, require special training of the patient for rehabilitation, or may be expected to require a long period of supervision, observation, or care (Dictionary of Health Services Management, 2d ed). For epidemiological studies chronic disease often includes HEART DISEASES; STROKE; CANCER; and diabetes (DIABETES MELLITUS, TYPE 2). Chronic Condition,Chronic Illness,Chronically Ill,Chronic Conditions,Chronic Diseases,Chronic Illnesses,Condition, Chronic,Disease, Chronic,Illness, Chronic
D004599 Electric Stimulation Therapy Application of electric current in treatment without the generation of perceptible heat. It includes electric stimulation of nerves or muscles, passage of current into the body, or use of interrupted current of low intensity to raise the detection threshold of the skin to pain. Electrotherapy,Electrical Stimulation Therapy,Interferential Current Electrotherapy,Therapeutic Electric Stimulation,Therapeutic Electrical Stimulation,Therapy, Electric Stimulation,Electric Stimulation, Therapeutic,Electrical Stimulation, Therapeutic,Electrotherapy, Interferential Current,Stimulation Therapy, Electric,Stimulation Therapy, Electrical,Stimulation, Therapeutic Electric,Stimulation, Therapeutic Electrical,Therapy, Electrical Stimulation
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D013126 Spinal Nerve Roots Paired bundles of NERVE FIBERS entering and leaving the SPINAL CORD at each segment. The dorsal and ventral nerve roots join to form the mixed segmental spinal nerves. The dorsal roots are generally afferent, formed by the central projections of the spinal (dorsal root) ganglia sensory cells, and the ventral roots are efferent, comprising the axons of spinal motor and PREGANGLIONIC AUTONOMIC FIBERS. Dorsal Roots,Spinal Roots,Ventral Roots,Dorsal Root,Nerve Root, Spinal,Nerve Roots, Spinal,Root, Dorsal,Root, Spinal,Root, Spinal Nerve,Root, Ventral,Roots, Dorsal,Roots, Spinal,Roots, Spinal Nerve,Roots, Ventral,Spinal Nerve Root,Spinal Root,Ventral Root

Related Publications

R P Iacono, and A N Guthkelch, and M V Boswell
June 2008, Chinese medical journal,
R P Iacono, and A N Guthkelch, and M V Boswell
January 1993, Clinical neurology and neurosurgery,
R P Iacono, and A N Guthkelch, and M V Boswell
December 1984, Neurosurgery,
R P Iacono, and A N Guthkelch, and M V Boswell
February 1985, Deutsche medizinische Wochenschrift (1946),
R P Iacono, and A N Guthkelch, and M V Boswell
July 1979, Journal of neurosurgery,
R P Iacono, and A N Guthkelch, and M V Boswell
January 1988, Applied neurophysiology,
R P Iacono, and A N Guthkelch, and M V Boswell
January 1985, Journal of neurosurgery,
R P Iacono, and A N Guthkelch, and M V Boswell
December 2022, Journal of neural engineering,
R P Iacono, and A N Guthkelch, and M V Boswell
December 2002, Journal of neurosurgery,
R P Iacono, and A N Guthkelch, and M V Boswell
January 1980, Acta neurochirurgica. Supplementum,
Copied contents to your clipboard!