Isolation and developmental expression of tyrosinase family genes in Xenopus laevis. 2003

Mayuko Kumasaka, and Shigeru Sato, and Ichiro Yajima, and Hiroaki Yamamoto
Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan.

The tyrosinase family of genes in vertebrates consists of three related members encoding melanogenic enzymes, tyrosinase (Tyr), tyrosinase-related protein-1 (TRP-1, Tyrp1) and tyrosinase-related protein-2 (Dct, TRP-2, Tyrp2). These proteins catalyze melanin production in pigment cells and play important roles in determining vertebrate coloration. This is the first report examining melanogenic gene expression in pigment cells during embryonic development of amphibians. Xenopus provides a useful experimental system for analyzing molecular mechanisms of pigment cells. However, in this animal little information is available not only about the developmental expression but also about the isolation of pigmentation genes. In this study, we isolated homologues of Tyr, Tyrp1 and Dct in Xenopus laevis (XlTyr, XlTyrp1, and XlDct). We studied their expression during development using in situ hybridization and found that all of them are expressed in neural crest-derived melanophores, most of which migrate through the medial pathway, and in the developing diencephalon-derived retinal pigment epithelium (RPE). Further, XlDct was expressed earlier than XlTyr and XlTyrp1, which suggests that XlDct is the most suitable marker gene for melanin-producing cells among them. XlDct expression was detected in migratory melanoblasts and in the unpigmented RPE. In addition, the expression of XlDct was detected in the pineal organ. The sum of these studies suggests that expression of the tyrosinase family of genes is conserved in pigment cells of amphibians and that using XlDct as a marker gene for pigment cells will allow further study of the developmental mechanisms of pigment cell differentiation using Xenopus.

UI MeSH Term Description Entries
D008543 Melanins Insoluble polymers of TYROSINE derivatives found in and causing darkness in skin (SKIN PIGMENTATION), hair, and feathers providing protection against SUNBURN induced by SUNLIGHT. CAROTENES contribute yellow and red coloration. Allomelanins,Melanin,Phaeomelanins
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi
D015971 Gene Expression Regulation, Enzymologic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in enzyme synthesis. Enzymologic Gene Expression Regulation,Regulation of Gene Expression, Enzymologic,Regulation, Gene Expression, Enzymologic
D017386 Sequence Homology, Amino Acid The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species. Homologous Sequences, Amino Acid,Amino Acid Sequence Homology,Homologs, Amino Acid Sequence,Homologs, Protein Sequence,Homology, Protein Sequence,Protein Sequence Homologs,Protein Sequence Homology,Sequence Homology, Protein,Homolog, Protein Sequence,Homologies, Protein Sequence,Protein Sequence Homolog,Protein Sequence Homologies,Sequence Homolog, Protein,Sequence Homologies, Protein,Sequence Homologs, Protein
D018507 Gene Expression Regulation, Developmental Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism. Developmental Gene Expression Regulation,Embryologic Gene Expression Regulation,Gene Expression Regulation, Embryologic,Regulation of Gene Expression, Developmental,Regulation of Gene Expression, Embryologic,Regulation, Gene Expression, Developmental,Regulation, Gene Expression, Embryologic

Related Publications

Mayuko Kumasaka, and Shigeru Sato, and Ichiro Yajima, and Hiroaki Yamamoto
March 2006, Developmental dynamics : an official publication of the American Association of Anatomists,
Mayuko Kumasaka, and Shigeru Sato, and Ichiro Yajima, and Hiroaki Yamamoto
October 2010, Developmental dynamics : an official publication of the American Association of Anatomists,
Mayuko Kumasaka, and Shigeru Sato, and Ichiro Yajima, and Hiroaki Yamamoto
August 2011, Developmental dynamics : an official publication of the American Association of Anatomists,
Mayuko Kumasaka, and Shigeru Sato, and Ichiro Yajima, and Hiroaki Yamamoto
September 1969, Nature,
Mayuko Kumasaka, and Shigeru Sato, and Ichiro Yajima, and Hiroaki Yamamoto
January 2006, Investigative ophthalmology & visual science,
Mayuko Kumasaka, and Shigeru Sato, and Ichiro Yajima, and Hiroaki Yamamoto
June 1991, Nucleic acids research,
Mayuko Kumasaka, and Shigeru Sato, and Ichiro Yajima, and Hiroaki Yamamoto
January 2005, The International journal of developmental biology,
Mayuko Kumasaka, and Shigeru Sato, and Ichiro Yajima, and Hiroaki Yamamoto
January 2006, The International journal of developmental biology,
Mayuko Kumasaka, and Shigeru Sato, and Ichiro Yajima, and Hiroaki Yamamoto
June 1988, Development (Cambridge, England),
Mayuko Kumasaka, and Shigeru Sato, and Ichiro Yajima, and Hiroaki Yamamoto
August 2001, Mechanisms of development,
Copied contents to your clipboard!