Type X collagen gene regulation by Runx2 contributes directly to its hypertrophic chondrocyte-specific expression in vivo. 2003

Qiping Zheng, and Guang Zhou, and Roy Morello, and Yuqing Chen, and Xavier Garcia-Rojas, and Brendan Lee
Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.

The alpha1(X) collagen gene (Col10a1) is the only known hypertrophic chondrocyte-specific molecular marker. Until recently, few transcriptional factors specifying its tissue-specific expression have been identified. We show here that a 4-kb murine Col10a1 promoter can drive beta-galactosidase expression in lower hypertrophic chondrocytes in transgenic mice. Comparative genomic analysis revealed multiple Runx2 (Runt domain transcription factor) binding sites within the proximal human, mouse, and chick Col10a1 promoters. In vitro transfection studies and chromatin immunoprecipitation analysis using hypertrophic MCT cells showed that Runx2 contributes to the transactivation of this promoter via its conserved Runx2 binding sites. When the 4-kb Col10a1 promoter transgene was bred onto a Runx2(+/-) background, the reporter was expressed at lower levels. Moreover, decreased Col10a1 expression and altered chondrocyte hypertrophy was also observed in Runx2 heterozygote mice, whereas Col10a1 was barely detectable in Runx2-null mice. Together, these data suggest that Col10a1 is a direct transcriptional target of Runx2 during chondrogenesis.

UI MeSH Term Description Entries
D006984 Hypertrophy General increase in bulk of a part or organ due to CELL ENLARGEMENT and accumulation of FLUIDS AND SECRETIONS, not due to tumor formation, nor to an increase in the number of cells (HYPERPLASIA). Hypertrophies
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D005269 Femur The longest and largest bone of the skeleton, it is situated between the hip and the knee. Trochanter,Greater Trochanter,Lesser Trochanter,Femurs,Greater Trochanters,Lesser Trochanters,Trochanter, Greater,Trochanter, Lesser,Trochanters,Trochanters, Greater,Trochanters, Lesser
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006811 Humerus Bone in humans and primates extending from the SHOULDER JOINT to the ELBOW JOINT. Humeri,Greater Tubercle,Humeral Greater Tuberosity,Humeral Lesser Tuberosity,Lesser Tubercle,Olecranon Fossa,Olecranon Fossi,Greater Tubercles,Greater Tuberosities, Humeral,Greater Tuberosity, Humeral,Humeral Greater Tuberosities,Humeral Lesser Tuberosities,Lesser Tubercles,Lesser Tuberosities, Humeral,Lesser Tuberosity, Humeral,Tubercle, Greater,Tubercles, Greater

Related Publications

Qiping Zheng, and Guang Zhou, and Roy Morello, and Yuqing Chen, and Xavier Garcia-Rojas, and Brendan Lee
July 2007, Developmental dynamics : an official publication of the American Association of Anatomists,
Qiping Zheng, and Guang Zhou, and Roy Morello, and Yuqing Chen, and Xavier Garcia-Rojas, and Brendan Lee
January 2024, American journal of cancer research,
Qiping Zheng, and Guang Zhou, and Roy Morello, and Yuqing Chen, and Xavier Garcia-Rojas, and Brendan Lee
October 1996, The Journal of biological chemistry,
Qiping Zheng, and Guang Zhou, and Roy Morello, and Yuqing Chen, and Xavier Garcia-Rojas, and Brendan Lee
June 1989, Developmental biology,
Qiping Zheng, and Guang Zhou, and Roy Morello, and Yuqing Chen, and Xavier Garcia-Rojas, and Brendan Lee
January 1988, Pathology and immunopathology research,
Qiping Zheng, and Guang Zhou, and Roy Morello, and Yuqing Chen, and Xavier Garcia-Rojas, and Brendan Lee
January 2019, In vivo (Athens, Greece),
Qiping Zheng, and Guang Zhou, and Roy Morello, and Yuqing Chen, and Xavier Garcia-Rojas, and Brendan Lee
January 1989, Connective tissue research,
Qiping Zheng, and Guang Zhou, and Roy Morello, and Yuqing Chen, and Xavier Garcia-Rojas, and Brendan Lee
December 1990, Experimental cell research,
Qiping Zheng, and Guang Zhou, and Roy Morello, and Yuqing Chen, and Xavier Garcia-Rojas, and Brendan Lee
June 1996, Annals of the New York Academy of Sciences,
Qiping Zheng, and Guang Zhou, and Roy Morello, and Yuqing Chen, and Xavier Garcia-Rojas, and Brendan Lee
July 2005, The Journal of biological chemistry,
Copied contents to your clipboard!