"De novo" peptide sequencing by MALDI-quadrupole-ion trap mass spectrometry: a preliminary study. 2003

Wenzhu Zhang, and Andrew N Krutchinsky, and Brian T Chait
The Rockefeller University, New York, New York 10021, USA.

Collision-induced dissociation of singly charged peptide ions produced by resonant excitation in a matrix-assisted laser desorption/ionization (MALDI) ion trap mass spectrometer yields relatively low complexity MS/MS spectra that exhibit highly preferential fragmentation, typically occurring adjacent to aspartyl, glutamyl, and prolyl residues. Although these spectra have proven to be of considerable utility for database-driven protein identification, they have generally been considered to contain insufficient information to be useful for extensive de novo sequencing. Here, we report a procedure for de novo sequencing of peptides that uses MS/MS data generated by an in-house assembled MALDI-quadrupole-ion trap mass spectrometer (Krutchinsky, Kalkum, and Chait Anal. Chem. 2001, 73, 5066-5077). Peptide sequences of up 14 amino acid residues in length have been deduced from digests of proteins separated by SDS-PAGE. Key to the success of the current procedure is an ability to obtain MS/MS spectra with high signal-to-noise ratios and to efficiently detect relatively low abundance fragment ions that result from the less favorable fragmentation pathways. The high signal-to-noise ratio yields sufficiently accurate mass differences to allow unambiguous amino acid sequence assignments (with a few exceptions), and the efficient detection of low abundance fragment ions allows continuous reads through moderately long stretches of sequence. Finally, we show how the aforementioned preferential cleavage property of singly charged ions can be used to facilitate the de novo sequencing process.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010449 Peptide Mapping Analysis of PEPTIDES that are generated from the digestion or fragmentation of a protein or mixture of PROTEINS, by ELECTROPHORESIS; CHROMATOGRAPHY; or MASS SPECTROMETRY. The resulting peptide fingerprints are analyzed for a variety of purposes including the identification of the proteins in a sample, GENETIC POLYMORPHISMS, patterns of gene expression, and patterns diagnostic for diseases. Fingerprints, Peptide,Peptide Fingerprinting,Protein Fingerprinting,Fingerprints, Protein,Fingerprint, Peptide,Fingerprint, Protein,Fingerprinting, Peptide,Fingerprinting, Protein,Mapping, Peptide,Peptide Fingerprint,Peptide Fingerprints,Protein Fingerprint,Protein Fingerprints
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D010940 Plant Proteins Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which PLANT PROTEINS, DIETARY is available. Plant Protein,Protein, Plant,Proteins, Plant
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D019032 Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization A mass spectrometric technique that is used for the analysis of large biomolecules. Analyte molecules are embedded in an excess matrix of small organic molecules that show a high resonant absorption at the laser wavelength used. The matrix absorbs the laser energy, thus inducing a soft disintegration of the sample-matrix mixture into free (gas phase) matrix and analyte molecules and molecular ions. In general, only molecular ions of the analyte molecules are produced, and almost no fragmentation occurs. This makes the method well suited for molecular weight determinations and mixture analysis. Laser Desorption-Ionization Mass Spectrometry, Matrix-Assisted,MALD-MS,MALDI,Mass Spectrometry, Matrix-Assisted Laser Desorption-Ionization,Mass Spectroscopy, Matrix-Assisted Laser Desorption-Ionization,Matrix-Assisted Laser Desorption-Ionization Mass Spectrometry,Spectroscopy, Mass, Matrix-Assisted Laser Desorption-Ionization,MALDI-MS,MS-MALD,SELDI-TOF-MS,Surface Enhanced Laser Desorption Ionization Mass Spectrometry,Laser Desorption Ionization Mass Spectrometry, Matrix Assisted,MALDI MS,Mass Spectrometry, Matrix Assisted Laser Desorption Ionization,Mass Spectroscopy, Matrix Assisted Laser Desorption Ionization,Matrix Assisted Laser Desorption Ionization Mass Spectrometry
D020224 Expressed Sequence Tags Partial cDNA (DNA, COMPLEMENTARY) sequences that are unique to the cDNAs from which they were derived. ESTs,Expressed Sequence Tag,Sequence Tag, Expressed,Sequence Tags, Expressed,Tag, Expressed Sequence,Tags, Expressed Sequence
D020539 Sequence Analysis, Protein A process that includes the determination of AMINO ACID SEQUENCE of a protein (or peptide, oligopeptide or peptide fragment) and the information analysis of the sequence. Amino Acid Sequence Analysis,Peptide Sequence Analysis,Protein Sequence Analysis,Sequence Determination, Protein,Amino Acid Sequence Analyses,Amino Acid Sequence Determination,Amino Acid Sequence Determinations,Amino Acid Sequencing,Peptide Sequence Determination,Protein Sequencing,Sequence Analyses, Amino Acid,Sequence Analysis, Amino Acid,Sequence Analysis, Peptide,Sequence Determination, Amino Acid,Sequence Determinations, Amino Acid,Acid Sequencing, Amino,Analyses, Peptide Sequence,Analyses, Protein Sequence,Analysis, Peptide Sequence,Analysis, Protein Sequence,Peptide Sequence Analyses,Peptide Sequence Determinations,Protein Sequence Analyses,Protein Sequence Determination,Protein Sequence Determinations,Sequence Analyses, Peptide,Sequence Analyses, Protein,Sequence Determination, Peptide,Sequence Determinations, Peptide,Sequence Determinations, Protein,Sequencing, Amino Acid,Sequencing, Protein
D028223 Pinus A plant genus in the family PINACEAE, order Pinales, class Pinopsida, division Coniferophyta. They are evergreen trees mainly in temperate climates. Pine Tree,Maritime Pine,Pinus abies,Pinus maritima,Pinus pinaster,Pinus radiata,Pinus tremula,Maritime Pines,Pine Trees,Pine, Maritime,Pines, Maritime,Tree, Pine,Trees, Pine

Related Publications

Wenzhu Zhang, and Andrew N Krutchinsky, and Brian T Chait
January 1996, Methods in enzymology,
Wenzhu Zhang, and Andrew N Krutchinsky, and Brian T Chait
October 2003, Current opinion in structural biology,
Wenzhu Zhang, and Andrew N Krutchinsky, and Brian T Chait
January 2000, Methods in molecular biology (Clifton, N.J.),
Wenzhu Zhang, and Andrew N Krutchinsky, and Brian T Chait
January 1998, Rapid communications in mass spectrometry : RCM,
Wenzhu Zhang, and Andrew N Krutchinsky, and Brian T Chait
January 1999, Journal of computational biology : a journal of computational molecular cell biology,
Wenzhu Zhang, and Andrew N Krutchinsky, and Brian T Chait
January 2015, Mass spectrometry reviews,
Wenzhu Zhang, and Andrew N Krutchinsky, and Brian T Chait
January 2005, Journal of proteome research,
Wenzhu Zhang, and Andrew N Krutchinsky, and Brian T Chait
June 2000, Analytical chemistry,
Wenzhu Zhang, and Andrew N Krutchinsky, and Brian T Chait
November 2000, Analytical chemistry,
Copied contents to your clipboard!