Serial Analysis of Gene Expression (SAGE) of Magnaporthe grisea: genes involved in appressorium formation. 2003

T Irie, and H Matsumura, and R Terauchi, and H Saitoh
Department of Environmental Science, University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, Shiga 522-8533, Japan.

Treatment with cyclic AMP (cAMP) induces appressorium formation in the phytopathogenic fungus Magnaporthe grisea, the causative agent of rice blast disease. In a search for the M. grisea genes responsible for appressorium formation and host invasion, SAGE (Serial Analysis of Gene Expression) was carried out using mRNA isolated from fungal conidia germinating in the presence and absence of cAMP. From cAMP-treated conidia 5087 tags including 2889 unique tags were isolated, whereas untreated conidia yielded 2342 unique tags out of total of 3938. cAMP treatment resulted in up- and down-regulation of genes corresponding to 57 and 53 unique tags, respectively. Upon consultation of EST/cDNA databases, 22 tags with higher representation in cAMP-treated conidia were annotated with putative gene names. Furthermore, 28 tags corresponding to cAMP-induced genes could be annotated with the help of the recently published genome sequence of M. grisea. cAMP-induced genes identified by SAGE included many genes that have not been described so far, as well as a number of genes known to be involved in pathogenicity, e.g. MPG1, MAS1 and MAC1. RT-PCR of 13 randomly selected genes confirmed the SAGE results, verifying the fidelity of the SAGE data.

UI MeSH Term Description Entries
D010935 Plant Diseases Diseases of plants. Disease, Plant,Diseases, Plant,Plant Disease
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012275 Oryza A genus of grass family (Poaceae) that include several rice species. Oryza sativa,Rice,Rices
D015966 Gene Expression Regulation, Fungal Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in fungi. Fungal Gene Expression Regulation,Regulation of Gene Expression, Fungal,Regulation, Gene Expression, Fungal
D020082 Magnaporthe A genus of FUNGI, in the family Magnaporthaceae of uncertain position (incertae sedis). It is best known for its species, M. grisea, which is one of the most popular experimental organisms of all fungal plant pathogens. Its anamorph is PYRICULARIA GRISEA. Magnaporthes
D020133 Reverse Transcriptase Polymerase Chain Reaction A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols. Polymerase Chain Reaction, Reverse Transcriptase,Reverse Transcriptase PCR,PCR, Reverse Transcriptase,Transcriptase PCR, Reverse
D020869 Gene Expression Profiling The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell. Gene Expression Analysis,Gene Expression Pattern Analysis,Transcript Expression Analysis,Transcriptome Profiling,Transcriptomics,mRNA Differential Display,Gene Expression Monitoring,Transcriptome Analysis,Analyses, Gene Expression,Analyses, Transcript Expression,Analyses, Transcriptome,Analysis, Gene Expression,Analysis, Transcript Expression,Analysis, Transcriptome,Differential Display, mRNA,Differential Displays, mRNA,Expression Analyses, Gene,Expression Analysis, Gene,Gene Expression Analyses,Gene Expression Monitorings,Gene Expression Profilings,Monitoring, Gene Expression,Monitorings, Gene Expression,Profiling, Gene Expression,Profiling, Transcriptome,Profilings, Gene Expression,Profilings, Transcriptome,Transcript Expression Analyses,Transcriptome Analyses,Transcriptome Profilings,mRNA Differential Displays

Related Publications

T Irie, and H Matsumura, and R Terauchi, and H Saitoh
November 2007, Fungal genetics and biology : FG & B,
T Irie, and H Matsumura, and R Terauchi, and H Saitoh
November 2004, Proteomics,
T Irie, and H Matsumura, and R Terauchi, and H Saitoh
January 1998, Phytopathology,
T Irie, and H Matsumura, and R Terauchi, and H Saitoh
January 1999, Bioscience, biotechnology, and biochemistry,
T Irie, and H Matsumura, and R Terauchi, and H Saitoh
February 2005, Journal of Zhejiang University. Science. B,
T Irie, and H Matsumura, and R Terauchi, and H Saitoh
January 1999, Bioscience, biotechnology, and biochemistry,
T Irie, and H Matsumura, and R Terauchi, and H Saitoh
January 2007, Methods in molecular biology (Clifton, N.J.),
T Irie, and H Matsumura, and R Terauchi, and H Saitoh
March 2007, Eukaryotic cell,
T Irie, and H Matsumura, and R Terauchi, and H Saitoh
December 1998, Molecules and cells,
Copied contents to your clipboard!