Behavioral effects of neuropeptide Y in F344 rat substrains with a reduced dipeptidyl-peptidase IV activity. 2003

Tim Karl, and Torsten Hoffmann, and Reinhard Pabst, and Stephan von Hörsten
Department of Functional and Applied Anatomy, Hannover Medical School, Germany.

Dipeptidyl-peptidase IV (DPPIV/CD26) is involved in several physiological functions by cleavage of dipeptides with a Xaa-Pro or Xaa-Ala sequence of regulatory peptides such as neuropeptide Y (NPY). Cleavage of NPY by DPPIV results in NPY(3-36), which lacks affinity for the Y(1) but not for other NPY receptor subtypes. Among other effects, the NPY Y(1) receptor mediates anxiolytic-like effects of NPY. In previous studies with F344 rat substrains lacking endogenous DPPIV-like activity we found a reduced behavioral stress response, which might be due to a differential degradation of NPY. Here we tested this hypothesis and administered intracerebroventricularly two different doses of NPY (0.0, 0.2, 1.0 nmol) in mutant and wildtype-like F344 substrains. NPY dose-dependently stimulated food intake and feeding motivation, decreased motor activity in the plus maze and social interaction test, and exerted anxiolytic-like effects. More important for the present hypothesis, NPY administration was found to be more potent in the DPPIV-negative substrains in exerting anxiolytic-like effects (increased social interaction time in the social interaction test) and sedative-like effects (decreased motor activity in the elevated plus maze). These data demonstrate for the first time a differential potency of NPY in DPPIV-deficient rats and suggest a changed receptor-specificity of NPY, which may result from a differential degradation of NPY in this genetic model of DPPIV deficiency. Overall, these results provide direct evidence that NPY-mediated effects in the central nervous system are modulated by DPPIV-like enzymatic activity.

UI MeSH Term Description Entries
D007398 Interpersonal Relations The reciprocal interaction of two or more persons. Social Relationships,Husband-Wife Communication,Partner Communication,Communication, Husband-Wife,Communication, Partner,Husband Wife Communication,Husband-Wife Communications,Interpersonal Relation,Partner Communications,Relation, Interpersonal,Relationship, Social,Social Relationship
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D009478 Neuropeptide Y A 36-amino acid peptide present in many organs and in many sympathetic noradrenergic neurons. It has vasoconstrictor and natriuretic activity and regulates local blood flow, glandular secretion, and smooth muscle activity. The peptide also stimulates feeding and drinking behavior and influences secretion of pituitary hormones. Neuropeptide Y-Like Immunoreactive Peptide,Neuropeptide Tyrosine,Neuropeptide Y Like Immunoreactive Peptide,Tyrosine, Neuropeptide
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005247 Feeding Behavior Behavioral responses or sequences associated with eating including modes of feeding, rhythmic patterns of eating, and time intervals. Dietary Habits,Eating Behavior,Faith-based Dietary Restrictions,Feeding Patterns,Feeding-Related Behavior,Food Habits,Diet Habits,Eating Habits,Behavior, Eating,Behavior, Feeding,Behavior, Feeding-Related,Behaviors, Eating,Behaviors, Feeding,Behaviors, Feeding-Related,Diet Habit,Dietary Habit,Dietary Restriction, Faith-based,Dietary Restrictions, Faith-based,Eating Behaviors,Eating Habit,Faith based Dietary Restrictions,Faith-based Dietary Restriction,Feeding Behaviors,Feeding Pattern,Feeding Related Behavior,Feeding-Related Behaviors,Food Habit,Habit, Diet,Habit, Dietary,Habit, Eating,Habit, Food,Habits, Diet,Pattern, Feeding,Patterns, Feeding,Restrictions, Faith-based Dietary
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018819 Dipeptidyl Peptidase 4 A serine protease that catalyses the release of an N-terminal dipeptide. Several biologically-active peptides have been identified as dipeptidyl peptidase 4 substrates including INCRETINS; NEUROPEPTIDES; and CHEMOKINES. The protein is also found bound to ADENOSINE DEAMINASE on the T-CELL surface and is believed to play a role in T-cell activation. Antigens, CD26,CD26 Antigens,Dipeptidyl-Peptidase IV,Adenosine Deaminase Complexing Protein 2,CD26 Antigen,Antigen, CD26,Dipeptidyl Peptidase IV

Related Publications

Tim Karl, and Torsten Hoffmann, and Reinhard Pabst, and Stephan von Hörsten
January 2006, Advances in experimental medicine and biology,
Tim Karl, and Torsten Hoffmann, and Reinhard Pabst, and Stephan von Hörsten
December 1993, Regulatory peptides,
Tim Karl, and Torsten Hoffmann, and Reinhard Pabst, and Stephan von Hörsten
January 2006, Advances in experimental medicine and biology,
Tim Karl, and Torsten Hoffmann, and Reinhard Pabst, and Stephan von Hörsten
September 2012, Peptides,
Tim Karl, and Torsten Hoffmann, and Reinhard Pabst, and Stephan von Hörsten
March 2019, Medicine,
Tim Karl, and Torsten Hoffmann, and Reinhard Pabst, and Stephan von Hörsten
July 1996, European journal of biochemistry,
Tim Karl, and Torsten Hoffmann, and Reinhard Pabst, and Stephan von Hörsten
January 1995, Advances in experimental medicine and biology,
Tim Karl, and Torsten Hoffmann, and Reinhard Pabst, and Stephan von Hörsten
January 1994, Methods in enzymology,
Tim Karl, and Torsten Hoffmann, and Reinhard Pabst, and Stephan von Hörsten
March 2001, Peptides,
Tim Karl, and Torsten Hoffmann, and Reinhard Pabst, and Stephan von Hörsten
September 1998, European journal of biochemistry,
Copied contents to your clipboard!