Molecular epidemiology of pulmonary tuberculosis in belgrade, central serbia. 2003

Dragana Vuković, and Sabine Rüsch-Gerdes, and Branislava Savić, and Stefan Niemann
Department of Bacteriology, Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia.

In order to gain precise data on the actual epidemiology of tuberculosis (TB) in Belgrade, central Serbia, we conducted the molecular epidemiological investigation described herein. IS6110 restriction fragment length polymorphism (RFLP) typing of 176 Mycobacterium tuberculosis isolates was performed. These strains were obtained from 48.4% of all patients diagnosed with culture-proven pulmonary TB from April through September 1998 and from May through October 1999. Clusters containing strains with identical RFLP IS6110 patterns were assumed to have arisen from recent transmission. Of the 176 cases, 55 (31.2%) were grouped into 23 clusters ranging in size from two to six patients. Nearly 80% of clustered patients were directly interviewed, and transmission between family-unrelated contacts was found to be predominant in the study population. Classical contact investigation identified only 2 (3.6%) of the 55 clustered patients. The clustering of TB patients was not associated with any demographic or clinical characteristic other than infection with multidrug-resistant (MDR) M. tuberculosis strains. Nearly 70% of MDR strains were clustered, which indicates active transmission of MDR TB in Belgrade. However, this was not observed by conventional epidemiologic surveillance. In conclusion, the first molecular epidemiologic analysis of TB in the region revealed frequent recent transmission of TB and pointed out significant shortcomings of the current concept for conventional contact tracing. The results presented also demonstrate that transmission of MDR TB in Belgrade is not optimally controlled, and they provide support for the development of improved control strategies, including application of molecular methods.

UI MeSH Term Description Entries
D008297 Male Males
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009169 Mycobacterium tuberculosis A species of gram-positive, aerobic bacteria that produces TUBERCULOSIS in humans, other primates, CATTLE; DOGS; and some other animals which have contact with humans. Growth tends to be in serpentine, cordlike masses in which the bacilli show a parallel orientation. Mycobacterium tuberculosis H37Rv
D012150 Polymorphism, Restriction Fragment Length Variation occurring within a species in the presence or length of DNA fragment generated by a specific endonuclease at a specific site in the genome. Such variations are generated by mutations that create or abolish recognition sites for these enzymes or change the length of the fragment. RFLP,Restriction Fragment Length Polymorphism,RFLPs,Restriction Fragment Length Polymorphisms
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D005260 Female Females
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000293 Adolescent A person 13 to 18 years of age. Adolescence,Youth,Adolescents,Adolescents, Female,Adolescents, Male,Teenagers,Teens,Adolescent, Female,Adolescent, Male,Female Adolescent,Female Adolescents,Male Adolescent,Male Adolescents,Teen,Teenager,Youths

Related Publications

Dragana Vuković, and Sabine Rüsch-Gerdes, and Branislava Savić, and Stefan Niemann
April 2007, Archives of orthopaedic and trauma surgery,
Dragana Vuković, and Sabine Rüsch-Gerdes, and Branislava Savić, and Stefan Niemann
December 2006, Clinical neurology and neurosurgery,
Dragana Vuković, and Sabine Rüsch-Gerdes, and Branislava Savić, and Stefan Niemann
January 1990, Plucne bolesti : casopis Udruzenja pneumoftiziologa Jugoslavije = the journal of Yugoslav Association of Phthisiology and Pneumology,
Dragana Vuković, and Sabine Rüsch-Gerdes, and Branislava Savić, and Stefan Niemann
January 2019, Journal of infection and public health,
Dragana Vuković, and Sabine Rüsch-Gerdes, and Branislava Savić, and Stefan Niemann
January 2011, Neuroepidemiology,
Dragana Vuković, and Sabine Rüsch-Gerdes, and Branislava Savić, and Stefan Niemann
October 2018, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases,
Dragana Vuković, and Sabine Rüsch-Gerdes, and Branislava Savić, and Stefan Niemann
January 2009, Pediatric hematology and oncology,
Dragana Vuković, and Sabine Rüsch-Gerdes, and Branislava Savić, and Stefan Niemann
January 2015, Epidemiology and infection,
Dragana Vuković, and Sabine Rüsch-Gerdes, and Branislava Savić, and Stefan Niemann
August 2011, Vector borne and zoonotic diseases (Larchmont, N.Y.),
Dragana Vuković, and Sabine Rüsch-Gerdes, and Branislava Savić, and Stefan Niemann
January 2017, Veterinary parasitology, regional studies and reports,
Copied contents to your clipboard!