Induced thermotolerance to apoptosis in a human T lymphocyte cell line. 1992

D D Mosser, and L H Martin
National Research Council of Canada Biotechnology Research Institute, Montreal, Quebec.

A brief exposure to elevated temperatures elicits, in all organisms, a transient state of increased heat resistance known as thermotolerance. The mechanism for this thermotolerant state is unknown primarily because it is not clear how mild hyperthermia leads to cell death. The realization that cell death can occur through an active process of self destruction, known as apoptosis, led us to consider whether thermotolerance provides protection against this mode of cell death. Apoptosis is a common and essential form of cell death that occurs under both physiological and pathological conditions. This mode of cell death requires the active participation of the dying cell and in this way differs mechanistically from the alternative mode of cell death, necrosis. Here we show that mild hyperthermia induces apoptosis in a human leukemic T cell line. This is evidenced by chromatin condensation, nuclear fragmentation and the cleavage of DNA into oligonucleosome size units. DNA fragmentation is a biochemical hallmark of apoptosis and requires the activation of an endogenous endonuclease. The extent of DNA fragmentation was proportional to the severity of heat stress for cells heated at 43 degrees C from 30 to 90 minutes. A brief conditioning heat treatment induced a resistance to apoptosis. This was evident as a resistance to DNA fragmentation and a reduction in the number of apoptotic cells after a heat challenge. Resistance to DNA fragmentation developed during a recovery period at 37 degrees C and was correlated with enhanced heat shock protein (hsp) synthesis. This heat-induced resistance to apoptosis suggests that thermotolerant cells have gained the capacity to prevent the onset of this pathway of self-destruction. An examination of this process in heated cells should provide new insights into the molecular basis of cellular thermotolerance.

UI MeSH Term Description Entries
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis

Related Publications

D D Mosser, and L H Martin
April 1995, The Journal of experimental medicine,
D D Mosser, and L H Martin
March 1994, Toxicology,
D D Mosser, and L H Martin
June 2008, Lin chuang er bi yan hou tou jing wai ke za zhi = Journal of clinical otorhinolaryngology, head, and neck surgery,
D D Mosser, and L H Martin
November 1997, Oncogene,
D D Mosser, and L H Martin
June 1987, Biochemical and biophysical research communications,
D D Mosser, and L H Martin
November 1978, Blood,
D D Mosser, and L H Martin
September 2016, Journal of immunotoxicology,
Copied contents to your clipboard!