Antioxidants protect primary rat hepatocyte cultures against acetaminophen-induced DNA strand breaks but not against acetaminophen-induced cytotoxicity. 2003

Virginia Lewerenz, and Sabine Hanelt, and Cathrin Nastevska, and Claudia El-Bahay, and Elke Röhrdanz, and Regine Kahl
Institute of Toxicology, University of Düsseldorf, P.O. Box 101007, D-40001, Düsseldorf, Germany

Acetaminophen, a safe analgesic when dosed properly but hepatotoxic at overdoses, has been reported to induce DNA strand breaks but it is unclear whether this event preceeds hepatocyte toxicity or is only obvious in case of overt cytotoxicity. Moreover, it is not known whether the formation of reactive oxygen species (ROS) is involved in the formation of the DNA strand breaks. In the present study, the dose-response curves for cytotoxicity and DNA strand breaks and the response to antioxidant protection have been compared. In primary hepatocytes from untreated male rats, cytotoxicity as measured by the MTT test and by Neutral Red accumulation was obvious at 10 mM acetaminophen but DNA strand breaks as measured by the comet assay were only found at 25-30 mM acetaminophen. Non-cytotoxic concentrations of three compounds with antioxidant activity, the glutathione precursor N-acetylcysteine (100 micro M), the plant polyphenol silibin (25 micro M) and the antioxidant vitamin alpha-tocopherol (50 micro M), were not able to inhibit acetaminophen toxicity at any acetaminophen concentration, while they completely prevented the formation of DNA strand breaks at 25-30 mM acetaminophen. The occurrence of oxidative stress in our experiments was indicated by a slight increase of malondialdehyde formation at 40 mM acetaminophen and by an adaptive increase in catalase mRNA concentration. We conclude that in acetaminophen-treated hepatocytes ROS-independent cell death and ROS-dependent DNA strand breaks occur which appear not to be causally related as judged from their dose dependency and their response to antioxidants.

UI MeSH Term Description Entries
D008054 Lipid Peroxides Peroxides produced in the presence of a free radical by the oxidation of unsaturated fatty acids in the cell in the presence of molecular oxygen. The formation of lipid peroxides results in the destruction of the original lipid leading to the loss of integrity of the membranes. They therefore cause a variety of toxic effects in vivo and their formation is considered a pathological process in biological systems. Their formation can be inhibited by antioxidants, such as vitamin E, structural separation or low oxygen tension. Fatty Acid Hydroperoxide,Lipid Peroxide,Lipoperoxide,Fatty Acid Hydroperoxides,Lipid Hydroperoxide,Lipoperoxides,Acid Hydroperoxide, Fatty,Acid Hydroperoxides, Fatty,Hydroperoxide, Fatty Acid,Hydroperoxide, Lipid,Hydroperoxides, Fatty Acid,Peroxide, Lipid,Peroxides, Lipid
D008107 Liver Diseases Pathological processes of the LIVER. Liver Dysfunction,Disease, Liver,Diseases, Liver,Dysfunction, Liver,Dysfunctions, Liver,Liver Disease,Liver Dysfunctions
D008297 Male Males
D009499 Neutral Red A vital dye used as an indicator and biological stain. Various adverse effects have been observed in biological systems. Toluylene Red,C.I. Basic Red 5,Nuclear Fast Red (Basic Dye),Red, Neutral,Red, Toluylene
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005562 Formazans Colored azo compounds formed by the reduction of tetrazolium salts. Employing this reaction, oxidoreductase activity can be determined quantitatively in tissue sections by allowing the enzymes to act on their specific substrates in the presence of tetrazolium salts. Formazan
D000077385 Silybin The major active component of silymarin flavonoids extracted from seeds of the MILK THISTLE, Silybum marianum; it is used in the treatment of HEPATITIS; LIVER CIRRHOSIS; and CHEMICAL AND DRUG INDUCED LIVER INJURY, and has antineoplastic activity; silybins A and B are diastereomers. 2,3-Dehydrosilybin,Alepa-forte,Ardeyhepan,Cefasilymarin,Durasilymarin,Hepa-Merz Sil,Hepa-loges,HepaBesch,Hepar-Pasc,Heparsyx,Heplant,Lagosa,Legalon Forte,Silibin,Silibinin,Silibinin A,Silibinin B,Silybin A,Silybin B,Silybinin,2,3 Dehydrosilybin,Alepa forte,Hepa Merz Sil,Hepa loges,Hepar Pasc
D000082 Acetaminophen Analgesic antipyretic derivative of acetanilide. It has weak anti-inflammatory properties and is used as a common analgesic, but may cause liver, blood cell, and kidney damage. Acetamidophenol,Hydroxyacetanilide,Paracetamol,APAP,Acamol,Acephen,Acetaco,Acetominophen,Algotropyl,Anacin-3,Datril,N-(4-Hydroxyphenyl)acetanilide,N-Acetyl-p-aminophenol,Panadol,Tylenol,p-Acetamidophenol,p-Hydroxyacetanilide,Anacin 3,Anacin3
D000111 Acetylcysteine The N-acetyl derivative of CYSTEINE. It is used as a mucolytic agent to reduce the viscosity of mucous secretions. It has also been shown to have antiviral effects in patients with HIV due to inhibition of viral stimulation by reactive oxygen intermediates. Mercapturic Acid,Acemuc,Acetabs,Acetylcystein AL,Acetylcystein Atid,Acetylcystein Heumann,Acetylcystein Trom,Acetylcysteine Hydrochloride,Acetylcysteine Sodium,Acetylcysteine Zinc,Acetylcysteine, (D)-Isomer,Acetylcysteine, (DL)-Isomer,Acetylcysteine, Monoammonium Salt,Acetylcysteine, Monosodium Salt,Acetylin,Acetyst,Acétylcystéine GNR,Airbron,Alveolex,Azubronchin,Bisolvon NAC,Bromuc,Broncho-Fips,Broncholysin,Broncoclar,Codotussyl,Cystamucil,Dampo Mucopect,Eurespiran,Exomuc,Fabrol,Fluimucil,Fluprowit,Frekatuss,Genac,Hoestil,Ilube,Jenacystein,Jenapharm,Lantamed,Larylin NAC,Lindocetyl,M-Pectil,Muciteran,Muco Sanigen,Mucomyst,Mucosil,Mucosol,Mucosolvin,N-Acetyl-L-cysteine,N-Acetylcysteine,NAC AL,NAC Zambon,Optipect Hustengetränk,Siccoral,Siran,Solmucol,acebraus,durabronchal,mentopin Acetylcystein,Acetylcystein, mentopin,Acid, Mercapturic,Broncho Fips,BronchoFips,Hustengetränk, Optipect,Hydrochloride, Acetylcysteine,M Pectil,MPectil,Monoammonium Salt Acetylcysteine,Monosodium Salt Acetylcysteine,Mucopect, Dampo,N Acetyl L cysteine,N Acetylcysteine,NAC, Bisolvon,Sanigen, Muco,Sodium, Acetylcysteine,Zambon, NAC,Zinc, Acetylcysteine

Related Publications

Virginia Lewerenz, and Sabine Hanelt, and Cathrin Nastevska, and Claudia El-Bahay, and Elke Röhrdanz, and Regine Kahl
May 2006, Toxicology,
Virginia Lewerenz, and Sabine Hanelt, and Cathrin Nastevska, and Claudia El-Bahay, and Elke Röhrdanz, and Regine Kahl
June 1985, Toxicology and applied pharmacology,
Virginia Lewerenz, and Sabine Hanelt, and Cathrin Nastevska, and Claudia El-Bahay, and Elke Röhrdanz, and Regine Kahl
January 1995, Drug and chemical toxicology,
Virginia Lewerenz, and Sabine Hanelt, and Cathrin Nastevska, and Claudia El-Bahay, and Elke Röhrdanz, and Regine Kahl
January 2004, Journal of biochemical and molecular toxicology,
Virginia Lewerenz, and Sabine Hanelt, and Cathrin Nastevska, and Claudia El-Bahay, and Elke Röhrdanz, and Regine Kahl
January 1991, Journal of biochemical toxicology,
Virginia Lewerenz, and Sabine Hanelt, and Cathrin Nastevska, and Claudia El-Bahay, and Elke Röhrdanz, and Regine Kahl
April 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Virginia Lewerenz, and Sabine Hanelt, and Cathrin Nastevska, and Claudia El-Bahay, and Elke Röhrdanz, and Regine Kahl
January 1997, Archives of toxicology,
Virginia Lewerenz, and Sabine Hanelt, and Cathrin Nastevska, and Claudia El-Bahay, and Elke Röhrdanz, and Regine Kahl
June 1997, Toxicology and applied pharmacology,
Virginia Lewerenz, and Sabine Hanelt, and Cathrin Nastevska, and Claudia El-Bahay, and Elke Röhrdanz, and Regine Kahl
September 1989, The Journal of pharmacology and experimental therapeutics,
Virginia Lewerenz, and Sabine Hanelt, and Cathrin Nastevska, and Claudia El-Bahay, and Elke Röhrdanz, and Regine Kahl
September 1984, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!