DNA immunization followed by a single boost with cells: a protein-free immunization protocol for production of monoclonal antibodies against the native form of membrane proteins. 2003

Satoshi Nagata, and Giuliana Salvatore, and Ira Pastan
Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Rm 5106, Bethesda, MD 20892-4264, USA.

Recent advancements in antibody-based therapies require the development of an efficient method for generation of monoclonal antibodies (MAbs) against the native form of membrane proteins. We examined DNA immunization followed by a single boost with cells as a protein-free immunization protocol for production of MAbs. Mice immunized with plasmid cDNAs encoding human CD30 or Ret tyrosine kinase were given a single boost with cells expressing the corresponding antigen prior to cell fusion. A total of nine cell fusion experiments revealed that the cell boost is necessary for efficient generation of hybridomas and the DNA-cell boost method gave good yields of specific MAbs (5-59 MAbs from one mouse). All IgG isotypes except IgG3 were generated, although IgG2a was the dominant isotype. All the MAbs reacted with native antigens expressed on cells in a fluorescence-activated cell sorter (FACS) analysis as well as with recombinant CD30 or Ret protein genetically fused with human Fc in an enzyme-linked immunosorbent assay (ELISA). The affinities of the anti-CD30 MAbs to CD30-Fc protein ranged from 0.9 to 12.4 nM Kds, which were comparable to existing MAbs to these proteins, which range from 3.0 to 13.0 nM. Western blot analysis and topographical epitope mapping experiments based on the mutual competition of pairs of the anti-CD30 MAbs revealed that about 40% of the epitopes were linear epitopes and that each epitope was topographically classified into one of six groups. The large number of MAbs that react with high affinities to a variety of epitopes on the native form of antigens indicates that the method presented in this paper could be generally useful for generating MAbs to other membrane proteins.

UI MeSH Term Description Entries
D007114 Immunization Deliberate stimulation of the host's immune response. ACTIVE IMMUNIZATION involves administration of ANTIGENS or IMMUNOLOGIC ADJUVANTS. PASSIVE IMMUNIZATION involves administration of IMMUNE SERA or LYMPHOCYTES or their extracts (e.g., transfer factor, immune RNA) or transplantation of immunocompetent cell producing tissue (thymus or bone marrow). Immunologic Stimulation,Immunostimulation,Sensitization, Immunologic,Variolation,Immunologic Sensitization,Immunological Stimulation,Sensitization, Immunological,Stimulation, Immunologic,Immunizations,Immunological Sensitization,Immunological Sensitizations,Immunological Stimulations,Sensitizations, Immunological,Stimulation, Immunological,Stimulations, Immunological,Variolations
D007117 Immunization, Secondary Any immunization following a primary immunization and involving exposure to the same or a closely related antigen. Immunization, Booster,Revaccination,Secondary Immunization,Booster Immunization,Booster Immunizations,Immunizations, Booster,Immunizations, Secondary,Revaccinations,Secondary Immunizations
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006825 Hybridomas Cells artificially created by fusion of activated lymphocytes with neoplastic cells. The resulting hybrid cells are cloned and produce pure MONOCLONAL ANTIBODIES or T-cell products, identical to those produced by the immunologically competent parent cell. Hybridoma
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal

Related Publications

Satoshi Nagata, and Giuliana Salvatore, and Ira Pastan
July 2007, Xi bao yu fen zi mian yi xue za zhi = Chinese journal of cellular and molecular immunology,
Satoshi Nagata, and Giuliana Salvatore, and Ira Pastan
November 2016, BMC biotechnology,
Satoshi Nagata, and Giuliana Salvatore, and Ira Pastan
April 1994, Immunology letters,
Satoshi Nagata, and Giuliana Salvatore, and Ira Pastan
September 2005, Immunology letters,
Satoshi Nagata, and Giuliana Salvatore, and Ira Pastan
April 1983, The Journal of cell biology,
Satoshi Nagata, and Giuliana Salvatore, and Ira Pastan
October 2000, Journal of immunological methods,
Satoshi Nagata, and Giuliana Salvatore, and Ira Pastan
January 1986, Methods in enzymology,
Satoshi Nagata, and Giuliana Salvatore, and Ira Pastan
April 2003, Journal of virological methods,
Copied contents to your clipboard!