Heart rate variability in athletes. 2003

André E Aubert, and Bert Seps, and Frank Beckers
Laboratory of Experimental Cardiology, School of Medicine, K.U. Leuven, University Hospital Gasthuisberg O/N, Leuven, Belgium. Andre.aubert@med.kuleuven.ac.be

This review examines the influence on heart rate variability (HRV) indices in athletes from training status, different types of exercise training, sex and ageing, presented from both cross-sectional and longitudinal studies. The predictability of HRV in over-training, athletic condition and athletic performance is also included. Finally, some recommendations concerning the application of HRV methods in athletes are made.The cardiovascular system is mostly controlled by autonomic regulation through the activity of sympathetic and parasympathetic pathways of the autonomic nervous system. Analysis of HRV permits insight in this control mechanism. It can easily be determined from ECG recordings, resulting in time series (RR-intervals) that are usually analysed in time and frequency domains. As a first approach, it can be assumed that power in different frequency bands corresponds to activity of sympathetic (0.04-0.15 Hz) and parasympathetic (0.15-0.4 Hz) nerves. However, other mechanisms (and feedback loops) are also at work, especially in the low frequency band. During dynamic exercise, it is generally assumed that heart rate increases due to both a parasympathetic withdrawal and an augmented sympathetic activity. However, because some authors disagree with the former statement and the fact that during exercise there is also a technical problem related to the non-stationary signals, a critical look at interpretation of results is needed. It is strongly suggested that, when presenting reports on HRV studies related to exercise physiology in general or concerned with athletes, a detailed description should be provided on analysis methods, as well as concerning population, and training schedule, intensity and duration. Most studies concern relatively small numbers of study participants, diminishing the power of statistics. Therefore, multicentre studies would be preferable. In order to further develop this fascinating research field, we advocate prospective, randomised, controlled, long-term studies using validated measurement methods. Finally, there is a strong need for basic research on the nature of the control and regulating mechanism exerted by the autonomic nervous system on cardiovascular function in athletes, preferably with a multidisciplinary approach between cardiologists, exercise physiologists, pulmonary physiologists, coaches and biomedical engineers.

UI MeSH Term Description Entries
D010806 Physical Education and Training Instructional programs in the care and development of the body, often in schools. The concept does not include prescribed exercises, which is EXERCISE THERAPY. Education, Physical,Physical Education,Physical Education, Training
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001341 Autonomic Nervous System The ENTERIC NERVOUS SYSTEM; PARASYMPATHETIC NERVOUS SYSTEM; and SYMPATHETIC NERVOUS SYSTEM taken together. Generally speaking, the autonomic nervous system regulates the internal environment during both peaceful activity and physical or emotional stress. Autonomic activity is controlled and integrated by the CENTRAL NERVOUS SYSTEM, especially the HYPOTHALAMUS and the SOLITARY NUCLEUS, which receive information relayed from VISCERAL AFFERENTS. Vegetative Nervous System,Visceral Nervous System,Autonomic Nervous Systems,Nervous System, Autonomic,Nervous System, Vegetative,Nervous System, Visceral,Nervous Systems, Autonomic,Nervous Systems, Vegetative,Nervous Systems, Visceral,System, Autonomic Nervous,System, Vegetative Nervous,System, Visceral Nervous,Systems, Autonomic Nervous,Systems, Vegetative Nervous,Systems, Visceral Nervous,Vegetative Nervous Systems,Visceral Nervous Systems
D012815 Signal Processing, Computer-Assisted Computer-assisted processing of electric, ultrasonic, or electronic signals to interpret function and activity. Digital Signal Processing,Signal Interpretation, Computer-Assisted,Signal Processing, Digital,Computer-Assisted Signal Interpretation,Computer-Assisted Signal Interpretations,Computer-Assisted Signal Processing,Interpretation, Computer-Assisted Signal,Interpretations, Computer-Assisted Signal,Signal Interpretation, Computer Assisted,Signal Interpretations, Computer-Assisted,Signal Processing, Computer Assisted
D013177 Sports Activities or games, usually involving physical effort or skill. Reasons for engagement in sports include pleasure, competition, and/or financial reward. Athletics,Athletic,Sport
D017704 Baroreflex A response by the BARORECEPTORS to increased BLOOD PRESSURE. Increased pressure stretches BLOOD VESSELS which activates the baroreceptors in the vessel walls. The net response of the CENTRAL NERVOUS SYSTEM is a reduction of central sympathetic outflow. This reduces blood pressure both by decreasing peripheral VASCULAR RESISTANCE and by lowering CARDIAC OUTPUT. Because the baroreceptors are tonically active, the baroreflex can compensate rapidly for both increases and decreases in blood pressure. Reflex, Baroreceptor,Baroreceptor Reflex,Baroreceptor Reflexes,Baroreflexes,Reflexes, Baroreceptor

Related Publications

André E Aubert, and Bert Seps, and Frank Beckers
August 2016, Clinical autonomic research : official journal of the Clinical Autonomic Research Society,
André E Aubert, and Bert Seps, and Frank Beckers
March 2012, Clinical physiology and functional imaging,
André E Aubert, and Bert Seps, and Frank Beckers
March 1993, The Journal of sports medicine and physical fitness,
André E Aubert, and Bert Seps, and Frank Beckers
January 2001, Journal of cardiology,
André E Aubert, and Bert Seps, and Frank Beckers
July 2012, European journal of applied physiology,
André E Aubert, and Bert Seps, and Frank Beckers
November 1997, The American journal of cardiology,
André E Aubert, and Bert Seps, and Frank Beckers
September 2006, Clinical journal of sport medicine : official journal of the Canadian Academy of Sport Medicine,
André E Aubert, and Bert Seps, and Frank Beckers
July 2001, Autonomic neuroscience : basic & clinical,
André E Aubert, and Bert Seps, and Frank Beckers
December 2003, The Journal of sports medicine and physical fitness,
André E Aubert, and Bert Seps, and Frank Beckers
June 2019, Physiology & behavior,
Copied contents to your clipboard!