Genome-wide mRNA profiling reveals heterochronic allelic variation and a new imprinted gene in hybrid maize endosperm. 2003

Mei Guo, and Mary A Rupe, and Olga N Danilevskaya, and Xiaofeng Yang, and Zihua Hu
Pioneer Hi-Bred International, Inc., Johnston, IA 50131-0552, USA. mei.guo@pioneer.com

We have taken a genomic approach to examine global gene expression in the maize endosperm in relation to dosage and parental effects. Endosperm of eight hybrids generated by reciprocal crosses and their seven inbred parents were sampled at three developmental stages: 10, 14, and 21 days after pollination (DAP). These samples were subjected to GeneCalling, an open-ended mRNA-profiling technology, which simultaneously analyzes thousands of genes. Results indicated that the overall level of gene expression in the maize endosperm was dosage-dependent, that is, the gene expression was proportional to the parental genome contribution of 2n maternal : 1n paternal. However, approximately 8% of the genes deviated from such allelic additive expression and exhibited differential expression in hybrids of reciprocal crosses, resembling either maternally or paternally expressed genes. There were more genes with maternal-like expression (MLE) than those with paternal-like expression (PLE). Allele-specific expression analysis of four selected genes using the WAVE denaturing HPLC (dHPLC) system revealed several mechanisms responsible for the deviation from the allelic additive expression in the hybrid endosperm: heterochronic allelic variation, allelic variation in the level of expression, and genomic imprinting. We discovered a novel imprinted gene no-apical-meristem (NAM) related protein1 (nrp1) that was expressed only in the endosperm and regulated by gene-specific imprinting. The nrp1 gene, a putative transcriptional factor, may play an important role in endosperm development.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010940 Plant Proteins Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which PLANT PROTEINS, DIETARY is available. Plant Protein,Protein, Plant,Proteins, Plant
D003313 Zea mays A plant species of the family POACEAE. It is a tall grass grown for its EDIBLE GRAIN, corn, used as food and animal FODDER. Corn,Indian Corn,Maize,Teosinte,Zea,Corn, Indian
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D006823 Hybrid Vigor The adaptive superiority of the heterozygous GENOTYPE with respect to one or more characters in comparison with the corresponding HOMOZYGOTE. Heterosis,Vigor, Hybrid
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012639 Seeds The encapsulated embryos of flowering plants. They are used as is or for animal feed because of the high content of concentrated nutrients like starches, proteins, and fats. Rapeseed, cottonseed, and sunflower seed are also produced for the oils (fats) they yield. Diaspores,Elaiosomes,Embryos, Plant,Plant Embryos,Plant Zygotes,Zygotes, Plant,Diaspore,Elaiosome,Embryo, Plant,Plant Embryo,Plant Zygote,Seed,Zygote, Plant
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription

Related Publications

Mei Guo, and Mary A Rupe, and Olga N Danilevskaya, and Xiaofeng Yang, and Zihua Hu
September 2021, The Plant journal : for cell and molecular biology,
Mei Guo, and Mary A Rupe, and Olga N Danilevskaya, and Xiaofeng Yang, and Zihua Hu
February 2016, The Plant journal : for cell and molecular biology,
Mei Guo, and Mary A Rupe, and Olga N Danilevskaya, and Xiaofeng Yang, and Zihua Hu
March 2022, Genome biology,
Mei Guo, and Mary A Rupe, and Olga N Danilevskaya, and Xiaofeng Yang, and Zihua Hu
June 2011, PLoS genetics,
Mei Guo, and Mary A Rupe, and Olga N Danilevskaya, and Xiaofeng Yang, and Zihua Hu
November 2022, Parasitology research,
Mei Guo, and Mary A Rupe, and Olga N Danilevskaya, and Xiaofeng Yang, and Zihua Hu
November 2013, Proceedings of the National Academy of Sciences of the United States of America,
Mei Guo, and Mary A Rupe, and Olga N Danilevskaya, and Xiaofeng Yang, and Zihua Hu
May 2023, iScience,
Mei Guo, and Mary A Rupe, and Olga N Danilevskaya, and Xiaofeng Yang, and Zihua Hu
January 2012, Methods in molecular biology (Clifton, N.J.),
Mei Guo, and Mary A Rupe, and Olga N Danilevskaya, and Xiaofeng Yang, and Zihua Hu
October 2014, Plant cell reports,
Mei Guo, and Mary A Rupe, and Olga N Danilevskaya, and Xiaofeng Yang, and Zihua Hu
September 2013, Development genes and evolution,
Copied contents to your clipboard!