Self-protection mechanisms in antibiotic producers. 1992

E Cundliffe
Department of Biochemistry, University of Leicester, UK.

Various ways in which antibiotic-producing organisms are able to resist the actions of their products are discussed. Examples are given of antibiotic inactivation and also the modification of antibiotic target sites (most notably, ribosomes) to which drugs would otherwise bind and thereby exert their usual inhibitory effects. An interesting variation on the latter theme involves the duplication of target enzymes so that both sensitive and resistant versions are produced, the latter inducibly. Speculative discussion of antibiotic efflux leads to examples of cloned resistance determinants that probably encode components of efflux systems. Although of interest in their own right, resistance mechanisms should not be viewed narrowly when the physiology of antibiotic producers is considered. Thus, chemical modification of drug molecules may not only fulfil a protective role within the cell but may also provide substrates for efflux. Recent evidence that such considerations apply to macrolide antibiotics is presented. The control of resistance in producing organisms is also discussed with particular reference to the induction of novobiocin resistance in Streptomyces sphaeroides. This involves the interplay of novobiocin-sensitive and -resistant forms of DNA gyrase and features a promoter that displays a dramatic response to changes in DNA topology.

UI MeSH Term Description Entries
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D000191 Actinomycetaceae A family of bacteria including numerous parasitic and pathogenic forms.
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D015964 Gene Expression Regulation, Bacterial Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria. Bacterial Gene Expression Regulation,Regulation of Gene Expression, Bacterial,Regulation, Gene Expression, Bacterial

Related Publications

E Cundliffe
February 2007, Nihon rinsho. Japanese journal of clinical medicine,
E Cundliffe
January 1991, Antibiotiki i khimioterapiia = Antibiotics and chemoterapy [sic],
E Cundliffe
October 2004, Emergency medical services,
E Cundliffe
February 2007, Expert opinion on drug discovery,
E Cundliffe
December 1988, Antibiotiki i khimioterapiia = Antibiotics and chemoterapy [sic],
E Cundliffe
November 2023, Nature communications,
Copied contents to your clipboard!