Effects of vasopressin and angiotensin II on neurones in the rat dorsal motor nucleus of the vagus, in vitro. 1992

Z L Mo, and T Katafuchi, and H Muratani, and T Hori
Department of Physiology, Faculty of Medicine, Kyushu University 60, Fukuoka, Japan.

1. Extracellular recordings were made from 297 spontaneously firing neurones in the dorsal motor nucleus of the vagus (DMV) in slice preparations of rat medulla oblongata. Some of the neurones recorded were identified to be vagal motoneurones by antidromic stimulation. The cells fired with a slow irregular pattern at an average rate of 1.1 +/- 0.1 spikes/s (mean +/- S.E.M.). 2. Arginine vasopressin (AVP) was applied by perfusion in 196 of the 297 cells. Most of the neurones (190/196, 97%) were excited by 10(-6) M AVP with an increase in firing rate from the basal level of 1.1 +/- 0.1 to a maximum of 2.5 +/- 0.2 spikes/s. There was a dose-dependent relation between the concentration of AVP and the increased firing rate in all DMV neurones tested (n = 38). The threshold concentration of the peptide to produce changes in firing rate was assumed to be about 10(-10) M. The remaining six neurones were not affected by application of AVP. 3. Application of oxytocin (OXT, 10(-6) M) increased the firing rate of all thirty-eight neurones tested. The effects of AVP and OXT on all neurones examined (n = 20 and 4, respectively) still persisted after blocking the synaptic transmission in a low-Ca2+ or Ca(2+)-free-high-Mg2+ solution, indicating the direct action of both AVP and OXT on the postsynaptic membranes. 4. The AVP-induced excitatory responses were completely but reversibly blocked by the V1-type receptor antagonists, [1-(beta-mercapto-beta, beta-cyclopentamethylene-propionic acid), 2-(O-methyl)tyrosine]-arginine vasopressin (d(CH2)5Tyr(Me)AVP) (n = 5) and Phaa-D-Tyr(Et)Phe-Gln-Asn-Lys-Pro-Arg-NH2 (n = 6), whereas a selective and reversible OXT receptor antagonist, desGly-NH2d(CH2)5[Tyr-(Me)2Thr4]ornithine vasotocin, which suppressed the OXT-induced excitation, did not block the responses to AVP (n = 11). 5. Application of angiotensin II (AII, 10(-6) M) to 153 neurones increased the firing rates of 60 (39%) neurones. The firing rate was increased from the basal level of 1.0 +/- 0.1 to a maximum of 1.8 +/- 0.2 spikes/s (n = 60). The effect of AII was completely abolished by an AII receptor antagonist, [Sar1,Ile8]angiotensin II (n = 6). There was a dose dependence of the excitatory response on AII concentration in all of eleven neurones tested. The threshold concentration was assumed to be about 10(-9) M. The activity of 5 (3%) of 153 neurones was decreased, and the remaining 88 (58%) neurones were not affected by AII.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D010121 Oxytocin A nonapeptide hormone released from the neurohypophysis (PITUITARY GLAND, POSTERIOR). It differs from VASOPRESSIN by two amino acids at residues 3 and 8. Oxytocin acts on SMOOTH MUSCLE CELLS, such as causing UTERINE CONTRACTIONS and MILK EJECTION. Ocytocin,Pitocin,Syntocinon
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001127 Arginine Vasopressin The predominant form of mammalian antidiuretic hormone. It is a nonapeptide containing an ARGININE at residue 8 and two disulfide-linked cysteines at residues of 1 and 6. Arg-vasopressin is used to treat DIABETES INSIPIDUS or to improve vasomotor tone and BLOOD PRESSURE. Argipressin,Vasopressin, Arginine,Arg-Vasopressin,Argipressin Tannate,Arg Vasopressin

Related Publications

Z L Mo, and T Katafuchi, and H Muratani, and T Hori
December 1987, The Journal of physiology,
Z L Mo, and T Katafuchi, and H Muratani, and T Hori
December 2001, The Journal of physiology,
Z L Mo, and T Katafuchi, and H Muratani, and T Hori
November 1999, British journal of pharmacology,
Z L Mo, and T Katafuchi, and H Muratani, and T Hori
October 1992, The American journal of physiology,
Z L Mo, and T Katafuchi, and H Muratani, and T Hori
September 2004, The Journal of physiology,
Z L Mo, and T Katafuchi, and H Muratani, and T Hori
December 1984, Journal of hypertension. Supplement : official journal of the International Society of Hypertension,
Z L Mo, and T Katafuchi, and H Muratani, and T Hori
February 2004, American journal of physiology. Gastrointestinal and liver physiology,
Z L Mo, and T Katafuchi, and H Muratani, and T Hori
August 1984, Okajimas folia anatomica Japonica,
Z L Mo, and T Katafuchi, and H Muratani, and T Hori
November 1994, European journal of pharmacology,
Z L Mo, and T Katafuchi, and H Muratani, and T Hori
June 2007, American journal of physiology. Regulatory, integrative and comparative physiology,
Copied contents to your clipboard!