A cytoplasmic dynein heavy chain in sea urchin embryos. 1992

I R Gibbons, and D J Asai, and W J Tang, and B H Gibbons
Pacific Biomedical Research Center, Kewalo Marine Laboratory, University of Hawaii, Honolulu 96813.

By making the hypothesis that the pattern of conserved sequence residues in the vicinity of the hydrolytic ATP-binding site of dynein would resemble that in myosins from a broad variety of sources, we designed degenerate oligonucleotide primers capable of amplifying this region of multiple dynein isoforms from sea urchin embryo poly(A)+ RNA. Quantification of the expression of two of these dynein isoforms has shown that the level of mRNA encoding for the beta-heavy chain, like that of tubulin, increases 2-3-fold after deciliation of the embryos, whereas the expression of the second dynein isoform, like that of actin, is essentially unaffected. This second isoform is believed to be the cytoplasmic dynein of sea urchin embryos.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004398 Dyneins A family of multi-subunit cytoskeletal motor proteins that use the energy of ATP hydrolysis, generated by a ring of AAA ATPASES in the dynein heavy chain, to power a variety of cellular functions. Dyneins fall into two major classes based upon structural and functional criteria. ATPase, Dynein,Adenosinetriphosphatase, Dynein,Dynein,Dynein ATPase,Dynein Adenosinetriphosphatase,Dynein Heavy Chain,Dynein Intermediate Chain,Dynein Light Chain,Dynein Light Intermediate Chain,Adenosine Triphosphatase, Dynein,Dynein Heavy Chains,Dynein Intermediate Chains,Dynein Light Chains,Dynein Light Intermediate Chains,Chain, Dynein Heavy,Chain, Dynein Intermediate,Chain, Dynein Light,Chains, Dynein Heavy,Chains, Dynein Intermediate,Chains, Dynein Light,Dynein Adenosine Triphosphatase,Heavy Chain, Dynein,Heavy Chains, Dynein,Intermediate Chain, Dynein,Intermediate Chains, Dynein,Light Chain, Dynein,Light Chains, Dynein
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012617 Sea Urchins Somewhat flattened, globular echinoderms, having thin, brittle shells of calcareous plates. They are useful models for studying FERTILIZATION and EMBRYO DEVELOPMENT. Echinoidea,Sand-Dollar,Clypeasteroida,Sand Dollars,Clypeasteroidas,Dollar, Sand,Dollars, Sand,Echinoideas,Sand Dollar,Sand-Dollars,Sea Urchin,Urchin, Sea,Urchins, Sea
D016415 Sequence Alignment The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms. Sequence Homology Determination,Determination, Sequence Homology,Alignment, Sequence,Alignments, Sequence,Determinations, Sequence Homology,Sequence Alignments,Sequence Homology Determinations

Related Publications

I R Gibbons, and D J Asai, and W J Tang, and B H Gibbons
March 1977, Journal of biochemistry,
I R Gibbons, and D J Asai, and W J Tang, and B H Gibbons
June 1987, Journal of molecular biology,
I R Gibbons, and D J Asai, and W J Tang, and B H Gibbons
January 1986, Methods in enzymology,
I R Gibbons, and D J Asai, and W J Tang, and B H Gibbons
January 1990, Cell motility and the cytoskeleton,
I R Gibbons, and D J Asai, and W J Tang, and B H Gibbons
January 1986, Methods in enzymology,
I R Gibbons, and D J Asai, and W J Tang, and B H Gibbons
October 1965, Science (New York, N.Y.),
I R Gibbons, and D J Asai, and W J Tang, and B H Gibbons
July 1991, Biochemistry,
I R Gibbons, and D J Asai, and W J Tang, and B H Gibbons
November 2013, Trends in neurosciences,
I R Gibbons, and D J Asai, and W J Tang, and B H Gibbons
September 1985, Journal of biochemistry,
I R Gibbons, and D J Asai, and W J Tang, and B H Gibbons
December 1974, Cell differentiation,
Copied contents to your clipboard!