Effects of buthionine sulfoximine treatment on cellular glutathione levels and cytotoxicities of cisplatin, carboplatin and radiation in human stomach and ovarian cancer cell lines. 1992

K S Lee, and H K Kim, and H S Moon, and Y S Hong, and J H Kang, and D J Kim, and J G Park
Department of Internal Medicine, Catholic University Medical College, Seoul, Korea.

Chemotherapy failure remains a significant medical problem in the treatment of neoplastic disease and is thought to be due to many different factors including membrane transport, p-glycoprotein in multidrug resistance, glutathione and its related enzymes, topoisomerase II and DNA repair. Glutathione is a major constituent of non-protein thiol and participates in detoxification of chemotherapy and radiation. Thus, glutathione concentration is correlated with sensitivity to alkylating agents and radiation, and increased in resistant cell lines. Buthionine sulfoximine (BSO) is an inhibitor of glutathione biosynthesis and may increase cytotoxicities of alkylating agents, including melphalan and cisplatin, and radiation in sensitive and resistant cell lines. We studied effects on cellular glutathione levels and cytotoxicities of cisplatin, carboplatin and radiation by BSO treatment in human stomach cancer cell line (SNU-1) and ovarian cancer cell line (OVCAR-3). The results were as follow: 1) After BSO treatment of 1 mM and 2 mM for 2 days, the intracellular thiol concentration was depleted to 75.7% and 76.2% in SNU-1, and 74.1% and 63.0% in OVCAR-3, respectively. 2) The intracellular thiol concentration in SNU-1 was depleted to 33.4% after BSO 2 mM for only 2 hours incubation and 71.5% after small amount of BSO (0.02 mM) for 2 days. 3) The recovery of intracellular thiol concentration required more than 3 days after BSO removal. 4) BSO inhibited partially the growth of SNU-1 and OVCAR-3. 5) The cytotoxicities of cisplatin and carboplatin were markedly enhanced both in SNU-1 and OVCAR-3 by BSO treatment. 6) The cytotoxicities of radiation was increased in OVCAR-3 and SNU-1 by BSO treatment. Therefore, it is concluded that BSO can deplete effectively the intracellular thiol concentration and enhance the cytotoxicities of cisplatin, carboplatin and radiation.

UI MeSH Term Description Entries
D008717 Methionine Sulfoximine Sulfoximine, Methionine
D010051 Ovarian Neoplasms Tumors or cancer of the OVARY. These neoplasms can be benign or malignant. They are classified according to the tissue of origin, such as the surface EPITHELIUM, the stromal endocrine cells, and the totipotent GERM CELLS. Cancer of Ovary,Ovarian Cancer,Cancer of the Ovary,Neoplasms, Ovarian,Ovary Cancer,Ovary Neoplasms,Cancer, Ovarian,Cancer, Ovary,Cancers, Ovarian,Cancers, Ovary,Neoplasm, Ovarian,Neoplasm, Ovary,Neoplasms, Ovary,Ovarian Cancers,Ovarian Neoplasm,Ovary Cancers,Ovary Neoplasm
D011836 Radiation Tolerance The ability of some cells or tissues to survive lethal doses of IONIZING RADIATION. Tolerance depends on the species, cell type, and physical and chemical variables, including RADIATION-PROTECTIVE AGENTS and RADIATION-SENSITIZING AGENTS. Radiation Sensitivity,Radiosensitivity,Sensitivity, Radiation,Tolerance, Radiation,Radiation Sensitivities,Radiation Tolerances,Radiosensitivities,Sensitivities, Radiation,Tolerances, Radiation
D011838 Radiation-Sensitizing Agents Drugs used to potentiate the effectiveness of radiation therapy in destroying unwanted cells. Radiation Sensitizer,Radiosensitizing Agent,Radiosensitizing Agents,Agents, Radiation-Sensitizing,Radiation Sensitizers,Radiation Sensitizing Agents,Radiation-Sensitizing Drugs,Radiation-Sensitizing Effect,Radiation-Sensitizing Effects,Radiosensitizing Drugs,Radiosensitizing Effect,Radiosensitizing Effects,Agent, Radiosensitizing,Agents, Radiation Sensitizing,Agents, Radiosensitizing,Drugs, Radiation-Sensitizing,Drugs, Radiosensitizing,Effect, Radiation-Sensitizing,Effect, Radiosensitizing,Effects, Radiation-Sensitizing,Effects, Radiosensitizing,Radiation Sensitizing Drugs,Radiation Sensitizing Effect,Radiation Sensitizing Effects,Sensitizer, Radiation,Sensitizers, Radiation,Sensitizing Agents, Radiation
D011878 Radiotherapy The use of IONIZING RADIATION to treat malignant NEOPLASMS and some benign conditions. Radiotherapy, Targeted,Targeted Radiotherapy,Radiation Therapy,Radiation Therapy, Targeted,Radiation Treatment,Targeted Radiation Therapy,Radiation Therapies,Radiation Therapies, Targeted,Radiation Treatments,Radiotherapies,Radiotherapies, Targeted,Targeted Radiation Therapies,Targeted Radiotherapies,Therapies, Radiation,Therapies, Targeted Radiation,Therapy, Radiation,Therapy, Targeted Radiation,Treatment, Radiation
D002945 Cisplatin An inorganic and water-soluble platinum complex. After undergoing hydrolysis, it reacts with DNA to produce both intra and interstrand crosslinks. These crosslinks appear to impair replication and transcription of DNA. The cytotoxicity of cisplatin correlates with cellular arrest in the G2 phase of the cell cycle. Platinum Diamminodichloride,cis-Diamminedichloroplatinum(II),cis-Dichlorodiammineplatinum(II),Biocisplatinum,Dichlorodiammineplatinum,NSC-119875,Platidiam,Platino,Platinol,cis-Diamminedichloroplatinum,cis-Platinum,Diamminodichloride, Platinum,cis Diamminedichloroplatinum,cis Platinum
D005260 Female Females
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000964 Antimetabolites, Antineoplastic Antimetabolites that are useful in cancer chemotherapy. Antineoplastic Antimetabolites

Related Publications

K S Lee, and H K Kim, and H S Moon, and Y S Hong, and J H Kang, and D J Kim, and J G Park
June 1994, Nihon Sanka Fujinka Gakkai zasshi,
K S Lee, and H K Kim, and H S Moon, and Y S Hong, and J H Kang, and D J Kim, and J G Park
June 2004, Free radical biology & medicine,
K S Lee, and H K Kim, and H S Moon, and Y S Hong, and J H Kang, and D J Kim, and J G Park
October 1991, Journal of neuro-oncology,
K S Lee, and H K Kim, and H S Moon, and Y S Hong, and J H Kang, and D J Kim, and J G Park
May 1985, Cancer research,
K S Lee, and H K Kim, and H S Moon, and Y S Hong, and J H Kang, and D J Kim, and J G Park
August 1995, The Journal of biological chemistry,
K S Lee, and H K Kim, and H S Moon, and Y S Hong, and J H Kang, and D J Kim, and J G Park
November 1993, International journal of cancer,
K S Lee, and H K Kim, and H S Moon, and Y S Hong, and J H Kang, and D J Kim, and J G Park
April 1993, Cancer,
K S Lee, and H K Kim, and H S Moon, and Y S Hong, and J H Kang, and D J Kim, and J G Park
December 1988, The American review of respiratory disease,
K S Lee, and H K Kim, and H S Moon, and Y S Hong, and J H Kang, and D J Kim, and J G Park
September 1988, Human cell,
Copied contents to your clipboard!