The lethality and 7-ethoxyresorufin O-deethylase (EROD)-inducing potency of some individual polycyclic aromatic hydrocarbons (PAHs) and coplanar polychlorinated biphenyls (PCBs) in chick embryos were measured in order to compare the mechanisms of action of these compounds. In previous studies it was found that coplanar PCBs and certain PAHs have a high embryolethality in the chicken and that they induce embryonic EROD activity. Although the most potent PAHs were almost as embryolethal as the PCBs when injected into hens' eggs 72 h prior to measurement, they were considerably less potent EROD inducers. In the present study, three coplanar PCBs (3,3',4,4'-tetrachlorobiphenyl (TCB), 3,3',4,4',5-pentachlorobiphenyl (PeCB) and 3,3',4,4',5,5'-hexachlorobiphenyl (HCB)) and four of the most toxic PAHs (benzo[a]anthracene (BaA), benzo[k]fluoranthene (BkF), indeno[1,2,3-cd]pyrene (IP) and dibenzo[a, h]-anthracene (DBahA] were administered to chick embryos in different ways, including co-administration. Additive embryolethality was found when BkF and PeCB were co-administered as well as when BaA and DBahA were given simultaneously. The PAHs were more effective as EROD inducers when injected on day 9 (24 h prior to measurement) than when injected on day 7 (72 h prior to measurement). The opposite was found for PeCB and HCB, whereas no difference in potency was noted when comparing TCB injected 24 and 72 h before EROD determination. These substance-related differences were probably due, at least partly, to differences in biotransformation rates. EROD activities found after treatment with high doses of BkF, IP, or DBahA on day 9 were similar to those measured after treatment with PeCB in doses high enough to give maximal induction. Co-administration of high doses of BkF and PeCB did not further increase the activity, indicating that the PAHs and coplanar PCBs induce EROD to a common maximal value. To decrease the influence of metabolization of the PAHs on their EROD-inducing potency, EROD was determined early in development (day 8) and soon after treatment (24 h) in one experiment. In that experiment, the PAHs proved to be only a few times less potent EROD inducers in relation to their embryolethalities compared with the PCBs. The results of the present study, a previously observed similarity in pathology between chick embryos treated with PAHs and embryos treated with coplanar PCBs, and the fact that the most toxic PAHs also are the most avid Ah receptor binders suggest that the coplanar PCBs and the PAHs largely exert their toxicity in chick embryos via an Ah receptor-mediated mechanism. The differences between the compounds in their EROD-inducing potency/embryolethality ratios could probably be explained by their different rates of biotransformation.