Role of T cell receptor V beta genes in Theiler's virus-induced demyelination of mice. 1992

M Rodriguez, and A K Patick, and L R Pease, and C S David
Department of Neurology, Mayo Clinic, Rochester, MN 55905.

Intracerebral infection of certain strains of mice with Theiler's virus results in chronic immune-mediated demyelination in spinal cord. We used mouse mutants with deletion of the V beta class of TCR genes to examine the role of TCR genes in this demyelinating disease which is similar to multiple sclerosis. Quantitative analysis of spinal cord lesions demonstrated a markedly increased number and extent of demyelinated lesions in persistently infected RIII S/J mice which have a massive deletion of the TCR V beta-chain (V beta 5.2, V beta 8.3, V beta 5.1, V beta 8.2, V beta 5.3, V beta 8.1, V beta 13, V beta 12, V beta 11, V beta 9, V beta 6, V beta 15, V beta 17) compared with B10.RIII mice which are of identical MHC haplotype (H-2r) but have normal complement of V beta TCR genes. In contrast, infection of C57L (H-2b) or C57BR (H-2k) mice which have deletion of the V beta TCR genes (V beta 5.2, V beta 8.3, V beta 5.1, V beta 8.2, V beta 5.3, V beta 8.1, V beta 13, V beta 12, V beta 11, and V beta 9) resulted in few demyelinating lesions. Genetic segregation analysis of (B10.RIII x RIII S/J) x RIII S/J backcrossed mice and (B10.RIII x RIII S/J) F2 mice demonstrated correlation of increased susceptibility to demyelination with deletion of TCR V beta genes. The increase in number of demyelinating lesions correlated with increase in number of virus-Ag+ cells in spinal cord. These experiments provide strong evidence that the structural diversity at the TCR beta-complex can influence susceptibility to virus-induced demyelination.

UI MeSH Term Description Entries
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D003711 Demyelinating Diseases Diseases characterized by loss or dysfunction of myelin in the central or peripheral nervous system. Clinically Isolated CNS Demyelinating Syndrome,Clinically Isolated Syndrome, CNS Demyelinating,Demyelinating Disorders,Demyelination,Demyelinating Disease,Demyelinating Disorder,Demyelinations
D004680 Maus Elberfeld virus A strain of ENCEPHALOMYOCARDITIS VIRUS, a species of CARDIOVIRUS, usually causing an inapparent intestinal infection in mice. A small number of mice may show signs of flaccid paralysis. Encephalomyelitis Virus, Murine,Mouse Elberfeld Virus,Mouse Encephalomyelitis Virus,Murine Encephalomyelitis Virus,Encephalomyelitis Virus, Mouse
D004769 Enterovirus Infections Diseases caused by ENTEROVIRUS. Infections, Enterovirus,Enterovirus Infection,Infection, Enterovirus
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000956 Antigens, Viral Substances elaborated by viruses that have antigenic activity. Viral Antigen,Viral Antigens,Antigen, Viral
D015333 Gene Rearrangement, beta-Chain T-Cell Antigen Receptor Ordered rearrangement of T-cell variable gene regions coding for the beta-chain of antigen receptors. T-Cell Antigen Receptor beta-Chain Gene Rearrangement,T-Lymphocyte Antigen Receptor beta-Chain Gene Rearrangement,Gene Rearrangement, beta-Chain T Cell Antigen Receptor,T Cell beta-Chain Gene Rearrangement,T Lymphocyte beta-Chain Gene Rearrangement,Gene Rearrangement, beta Chain T Cell Antigen Receptor,T Cell Antigen Receptor beta Chain Gene Rearrangement,T Cell beta Chain Gene Rearrangement,T Lymphocyte Antigen Receptor beta Chain Gene Rearrangement,T Lymphocyte beta Chain Gene Rearrangement
D016693 Receptors, Antigen, T-Cell, alpha-beta T-cell receptors composed of CD3-associated alpha and beta polypeptide chains and expressed primarily in CD4+ or CD8+ T-cells. Unlike immunoglobulins, the alpha-beta T-cell receptors recognize antigens only when presented in association with major histocompatibility (MHC) molecules. Antigen Receptors, T-Cell, alpha-beta,T-Cell Receptors alpha-Chain,T-Cell Receptors beta-Chain,T-Cell Receptors, alpha-beta,TcR alpha-beta,Antigen T Cell Receptor, alpha Chain,Antigen T Cell Receptor, beta Chain,Receptors, Antigen, T Cell, alpha beta,T Cell Receptors, alpha beta,T-Cell Receptor alpha-Chain,T-Cell Receptor beta-Chain,T-Cell Receptor, alpha-beta,T Cell Receptor alpha Chain,T Cell Receptor beta Chain,T Cell Receptor, alpha beta,T Cell Receptors alpha Chain,T Cell Receptors beta Chain,TcR alpha beta,alpha-Chain, T-Cell Receptor,alpha-Chain, T-Cell Receptors,alpha-beta T-Cell Receptor,alpha-beta T-Cell Receptors,alpha-beta, TcR,beta-Chain, T-Cell Receptor,beta-Chain, T-Cell Receptors
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

M Rodriguez, and A K Patick, and L R Pease, and C S David
January 1994, Autoimmunity,
M Rodriguez, and A K Patick, and L R Pease, and C S David
May 1986, Laboratory investigation; a journal of technical methods and pathology,
M Rodriguez, and A K Patick, and L R Pease, and C S David
March 1988, The Journal of experimental medicine,
M Rodriguez, and A K Patick, and L R Pease, and C S David
June 1999, Journal of immunology (Baltimore, Md. : 1950),
M Rodriguez, and A K Patick, and L R Pease, and C S David
February 1988, Journal of immunology (Baltimore, Md. : 1950),
M Rodriguez, and A K Patick, and L R Pease, and C S David
September 1999, Experimental & molecular medicine,
M Rodriguez, and A K Patick, and L R Pease, and C S David
July 1993, Journal of immunology (Baltimore, Md. : 1950),
M Rodriguez, and A K Patick, and L R Pease, and C S David
April 1976, Science (New York, N.Y.),
Copied contents to your clipboard!