cAMP-dependent kinases in the algal flagellate Euglena gracilis. 1992

I A Carré, and L N Edmunds
Department of Anatomical Sciences, State University of New York, Stony Brook 11794.

Euglena cells grown in diurnal light-dark cycles exhibit circadian variations of their cAMP content, which we believe to be under the control of an endogenous timer because they persist in constant darkness in the absence of any environmental time cue. We think that these cAMP oscillations may play a role in the regulation of some of the numerous cellular activities that are known to display circadian rhythmicities in this organism. The role of cAMP in algal cells is still controversial, however, since the nature of the cAMP "receptor" is unknown. We show that extracts of the achlorophyllous ZC mutant of Euglena gracilis contain two cAMP-binding proteins, which bind cAMP with a high affinity (Kd values of 10 nM and 30 nM) and which can be separated by DEAE-cellulose chromatography. Protein kinase activity was assayed using Kemptide as a substrate. Stimulation of kinase activity by cAMP was observed after partial purification by DEAE-cellulose chromatography. Two peaks of activity were resolved, corresponding to distinct enzymes with different cAMP-analog specificities. Thus, cAMP signaling in plant cells may proceed by the phosphorylation of target proteins by cAMP-dependent kinases, in a manner similar to that of animal cells.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D002848 Chromatography, DEAE-Cellulose A type of ion exchange chromatography using diethylaminoethyl cellulose (DEAE-CELLULOSE) as a positively charged resin. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) DEAE-Cellulose Chromatography,Chromatography, DEAE Cellulose,DEAE Cellulose Chromatography
D002940 Circadian Rhythm The regular recurrence, in cycles of about 24 hours, of biological processes or activities, such as sensitivity to drugs or environmental and physiological stimuli. Diurnal Rhythm,Nyctohemeral Rhythm,Twenty-Four Hour Rhythm,Nycthemeral Rhythm,Circadian Rhythms,Diurnal Rhythms,Nycthemeral Rhythms,Nyctohemeral Rhythms,Rhythm, Circadian,Rhythm, Diurnal,Rhythm, Nycthemeral,Rhythm, Nyctohemeral,Rhythm, Twenty-Four Hour,Rhythms, Circadian,Rhythms, Diurnal,Rhythms, Nycthemeral,Rhythms, Nyctohemeral,Rhythms, Twenty-Four Hour,Twenty Four Hour Rhythm,Twenty-Four Hour Rhythms
D005056 Euglena gracilis A species of fresh-water, flagellated EUKARYOTES in the phylum EUGLENIDA. Euglena gracili,gracilis, Euglena
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

I A Carré, and L N Edmunds
January 2006, Journal of environmental quality,
I A Carré, and L N Edmunds
January 1997, Microgravity science and technology,
I A Carré, and L N Edmunds
August 1991, European biophysics journal : EBJ,
I A Carré, and L N Edmunds
September 1990, Microgravity science and technology,
I A Carré, and L N Edmunds
January 1997, Journal of plant physiology,
I A Carré, and L N Edmunds
January 1994, The Journal of eukaryotic microbiology,
I A Carré, and L N Edmunds
December 2003, Plant physiology,
I A Carré, and L N Edmunds
February 1975, Journal of general microbiology,
Copied contents to your clipboard!