Alterations in [3H]kainate and N-methyl-D-aspartate-sensitive L-[3H]-glutamate binding in the rat hippocampal formation following fimbria-fornix lesions. 1992

J W Geddes, and L Brunner, and C W Cotman, and G Buzsáki
Division of Neurosurgery, University of California, Irvine 92717.

Following lesions of the fimbria-fornix, there is a time-dependent increase in interictal spikes and seizure susceptibility. This may result from sprouting of local excitatory and inhibitory circuits in response to the loss of subcortical and commissural innervation of the hippocampal formation. We used receptor autoradiography to examine the density of N-methyl-D-aspartate (NMDA)-sensitive L-[3H]glutamate and [3H]-kainate (KA) binding sites in the hippocampal formation at 5 days, 3 months, and 1 year following bilateral aspiration lesions of the fimbria-fornix. At 5 days post-lesion, the CA3 and CA1 strata radiatum and oriens displayed a decrease (20-42%, P less than 0.01) in NMDA-sensitive L-[3H]glutamate binding. The initial decrease was followed by a moderate recovery at later time points but was still evident at 1 year postlesion. This may reflect a lesion-induced turnover of synaptic complexes, down-regulation of postsynaptic receptors, or loss of presynaptic receptors. Five days following fimbria-fornix lesion there was also a decrease (13-15%, P less than 0.05) in [3H]KA binding in CA3 strata radiatum and pyramidale. However, at 3 months postlesion KA receptor density was elevated by 29-33% (P less than 0.01) in the outer molecular layer of the dentate gyrus with no significant change in binding to the inner molecular layer. By 1 year postlesion, the density of [3H]KA binding sites was not significantly different from that observed in control animals of the same age. The increase in KA receptor density in the outer molecular layer 3 months after fimbria-fornix lesion may reflect sprouting of the perforant path input or mossy fibers to this region and contribute to the increase in interictal spikes and seizures susceptibility.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D011712 Pyramidal Tracts Fibers that arise from cells within the cerebral cortex, pass through the medullary pyramid, and descend in the spinal cord. Many authorities say the pyramidal tracts include both the corticospinal and corticobulbar tracts. Corticobulbar Tracts,Corticospinal Tracts,Decussation, Pyramidal,Corticobulbar Tract,Corticospinal Tract,Pyramidal Decussation,Pyramidal Tract,Tract, Corticobulbar,Tract, Corticospinal,Tract, Pyramidal,Tracts, Corticobulbar,Tracts, Corticospinal,Tracts, Pyramidal
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D005260 Female Females
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000110 Acetylcholinesterase An enzyme that catalyzes the hydrolysis of ACETYLCHOLINE to CHOLINE and acetate. In the CNS, this enzyme plays a role in the function of peripheral neuromuscular junctions. EC 3.1.1.7. Acetylcholine Hydrolase,Acetylthiocholinesterase,Hydrolase, Acetylcholine
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J W Geddes, and L Brunner, and C W Cotman, and G Buzsáki
June 1993, Experimental neurology,
J W Geddes, and L Brunner, and C W Cotman, and G Buzsáki
November 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J W Geddes, and L Brunner, and C W Cotman, and G Buzsáki
August 1990, Journal of neurochemistry,
J W Geddes, and L Brunner, and C W Cotman, and G Buzsáki
April 1985, The Journal of pharmacology and experimental therapeutics,
J W Geddes, and L Brunner, and C W Cotman, and G Buzsáki
June 1990, Brain research,
J W Geddes, and L Brunner, and C W Cotman, and G Buzsáki
July 1994, Sheng li ke xue jin zhan [Progress in physiology],
J W Geddes, and L Brunner, and C W Cotman, and G Buzsáki
June 1989, Biochimica et biophysica acta,
J W Geddes, and L Brunner, and C W Cotman, and G Buzsáki
July 1984, Neurochemical research,
J W Geddes, and L Brunner, and C W Cotman, and G Buzsáki
January 1994, Annals of neurology,
J W Geddes, and L Brunner, and C W Cotman, and G Buzsáki
November 1995, General pharmacology,
Copied contents to your clipboard!