Characterization of In0 of Pseudomonas aeruginosa plasmid pVS1, an ancestor of integrons of multiresistance plasmids and transposons of gram-negative bacteria. 1992

L Bissonnette, and P H Roy
Département de Biochimie, Faculté des Sciences et de Génie, Université Laval, Sainte-Foy, Québec, Canada.

Many multiresistance plasmids and transposons of gram-negative bacteria carry related DNA elements that appear to have evolved from a common ancestor by site-specific integration of discrete cassettes containing antibiotic resistance genes or sequences of unknown function. The site of integration is flanked by conserved segments coding for an integraselike protein and for sulfonamide resistance, respectively. These segments, together with the antibiotic resistance genes between them, have been termed integrons (H. W. Stokes and R. M. Hall, Mol. Microbiol. 3:1669-1683, 1989). We report here the characterization of an integron, In0, from Pseudomonas aeruginosa plasmid pVS1, which has an unoccupied integration site and hence may be an ancestor of more complex integrons. Codon usage of the integrase (int) and sulfonamide resistance (sul1) genes carried by this integron suggests a common origin. This contrasts with the codon usage of other antibiotic resistance genes that were presumably integrated later as cassettes during the evolution and spread of these DNA elements. We propose evolutionary schemes for (i) the genesis of the integrons by the site-specific integration of antibiotic resistance genes and (ii) the evolution of the integrons of multiresistance plasmids and transposons, in relation to the evolution of transposons related to Tn21.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003062 Codon A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE). Codon, Sense,Sense Codon,Codons,Codons, Sense,Sense Codons
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004254 DNA Nucleotidyltransferases Enzymes that catalyze the incorporation of deoxyribonucleotides into a chain of DNA. EC 2.7.7.-. Nucleotidyltransferases, DNA
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D006090 Gram-Negative Bacteria Bacteria which lose crystal violet stain but are stained pink when treated by Gram's method. Gram Negative Bacteria
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

L Bissonnette, and P H Roy
April 1981, The Journal of antimicrobial chemotherapy,
L Bissonnette, and P H Roy
January 2004, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases,
L Bissonnette, and P H Roy
January 1982, Journal of hygiene, epidemiology, microbiology, and immunology,
L Bissonnette, and P H Roy
August 1998, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America,
L Bissonnette, and P H Roy
October 1979, Archives of dermatology,
L Bissonnette, and P H Roy
August 1995, Kansenshogaku zasshi. The Journal of the Japanese Association for Infectious Diseases,
L Bissonnette, and P H Roy
July 1989, Zentralblatt fur Bakteriologie : international journal of medical microbiology,
Copied contents to your clipboard!