Oxygen modulates endothelium-derived relaxing factor production in fetal pulmonary arteries. 1992

P W Shaul, and M A Farrar, and T M Zellers
Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas 75235.

Alterations in endothelium-derived relaxing factor (EDRF) production or mechanism of action may be involved in the responses of the developing pulmonary vasculature to changes in oxygenation. In this study the effects of acute changes in in vitro oxygen tension on EDRF production were determined in isolated segments of ovine fetal intrapulmonary arteries (4th generation) obtained at 125-135 days of gestation (term 144 +/- 4 days). EDRF production was assessed by measuring segment guanosine 3',5'-cyclic monophosphate (cGMP) accumulation in the presence of a phosphodiesterase inhibitor. Basal (nonstimulated) cGMP production and cGMP production with acetylcholine (ACh) stimulation were dependent on the presence of the endothelium, on the availability of L-arginine, and on soluble guanylate cyclase activity, confirming that they were indicative of EDRF production. cGMP production with sodium nitroprusside (SNP) was used to discriminate changes in the sensitivity of soluble guanylate cyclase with varying conditions. With decreasing oxygen tension, basal and ACh-stimulated cGMP production were attenuated, whereas cGMP production with SNP was not, indicating oxygen modulation of EDRF production. Studies of endothelium-dependent relaxation yielded comparable findings in that the response to ACh was attenuated, but that to SNP was not altered by decreased oxygenation. In addition, the decline in endothelium-dependent relaxation with decreased oxygen tension was rapidly reversed when oxygenation was increased. Parallel experiments examining cGMP production in similarly sized mesenteric arteries revealed that the effect of oxygen on pulmonary artery EDRF production may be specific to that vascular bed. These findings indicate that oxygen selectively modulates EDRF production and endothelium-dependent relaxation in ovine fetal pulmonary arteries. Direct effects of oxygen on EDRF production may at least partially underlie the responses of the developing pulmonary circulation to changes in oxygenation.

UI MeSH Term Description Entries
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D011651 Pulmonary Artery The short wide vessel arising from the conus arteriosus of the right ventricle and conveying unaerated blood to the lungs. Arteries, Pulmonary,Artery, Pulmonary,Pulmonary Arteries
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D006152 Cyclic GMP Guanosine cyclic 3',5'-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3'- and 5'-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed) Guanosine Cyclic 3',5'-Monophosphate,Guanosine Cyclic 3,5 Monophosphate,Guanosine Cyclic Monophosphate,Guanosine Cyclic-3',5'-Monophosphate,3',5'-Monophosphate, Guanosine Cyclic,Cyclic 3',5'-Monophosphate, Guanosine,Cyclic Monophosphate, Guanosine,Cyclic-3',5'-Monophosphate, Guanosine,GMP, Cyclic,Guanosine Cyclic 3',5' Monophosphate,Monophosphate, Guanosine Cyclic
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001120 Arginine An essential amino acid that is physiologically active in the L-form. Arginine Hydrochloride,Arginine, L-Isomer,DL-Arginine Acetate, Monohydrate,L-Arginine,Arginine, L Isomer,DL Arginine Acetate, Monohydrate,Hydrochloride, Arginine,L Arginine,L-Isomer Arginine,Monohydrate DL-Arginine Acetate
D012756 Sheep Any of the ruminant mammals with curved horns in the genus Ovis, family Bovidae. They possess lachrymal grooves and interdigital glands, which are absent in GOATS. Ovis,Sheep, Dall,Dall Sheep,Ovis dalli

Related Publications

P W Shaul, and M A Farrar, and T M Zellers
July 1993, The American journal of physiology,
P W Shaul, and M A Farrar, and T M Zellers
February 1992, Japanese circulation journal,
P W Shaul, and M A Farrar, and T M Zellers
April 1993, The American journal of physiology,
P W Shaul, and M A Farrar, and T M Zellers
September 1990, British journal of pharmacology,
P W Shaul, and M A Farrar, and T M Zellers
January 1992, Journal of cardiovascular pharmacology,
P W Shaul, and M A Farrar, and T M Zellers
April 1991, The American journal of physiology,
P W Shaul, and M A Farrar, and T M Zellers
January 1986, Journal of cardiovascular pharmacology,
P W Shaul, and M A Farrar, and T M Zellers
April 2011, Hypertension (Dallas, Tex. : 1979),
P W Shaul, and M A Farrar, and T M Zellers
June 1991, Hypertension (Dallas, Tex. : 1979),
P W Shaul, and M A Farrar, and T M Zellers
September 1988, Journal of the American College of Cardiology,
Copied contents to your clipboard!