Phosphorylation of the C-terminal domain of the Na+/H+ exchanger by Ca2+/calmodulin-dependent protein kinase II. 1992

L Fliegel, and M P Walsh, and D Singh, and C Wong, and A Barr
Department of Biochemistry and Pediatrics, Faculty of Medicine, University of Alberta, Edmonton, Canada.

The Na+/H+ exchanger is a pH-regulatory protein that extrudes one H+ ion in exchange for one Na+ ion when intracellular pH declines. A number of studies have shown phorbol ester stimulation of activity in intact cells, leading to the idea that the exchanger is regulated by protein kinase C-mediated phosphorylation in vivo. cDNA encoding the protein has been cloned, and a recent model suggests a large internal cytoplasmic C-terminal domain that may be a site of regulation of the exchanger [Sardet, Franchi & Pouyssegur (1989) Cell 56, 271-280]. We examined this region of the protein using a rabbit cardiac Na+/H+ exchanger cDNA clone. cDNA of the Na+/H+ exchanger, coding for the C-terminal 178 amino acid residues, was cloned into the expression vector pEX-1 and expressed as a fusion protein with beta-galactosidase. The fusion protein reacted with an antibody produced against a synthetic peptide of the C-terminal 13 amino acid residues of the Na+/H+ exchanger, confirming the identity of the expressed protein. Control and experimental pEX-1-Na+/H+ exchanger protein was purified on a p-aminophenyl beta-D-thiogalactopyranoside-agarose column. Purified Ca2+/calmodulin-dependent protein kinase II readily phosphorylated the Na+/H+ exchanger protein in a Ca(2+)- and calmodulin-dependent manner in vitro, but this region of the protein was not a substrate for purified protein kinase C or for the catalytic subunit of cyclic AMP-dependent protein kinase. Control-expressed beta-galactosidase was phosphorylated to a maximal level of 0.77 +/- 0.17 mol of Pi/mol (mean +/- S.E.M., n = 6) whereas the fusion protein was phosphorylated to a maximal level of 4.09 +/- 0.39 mol of Pi/mol (n = 6), suggesting one site of phosphorylation in beta-galactosidase and three in the C-terminal domain of the Na+/H+ exchanger. Examination of the deduced amino acid sequence of this part of the exchanger reveals three consensus sequences for Ca2+/calmodulin-dependent protein kinase II. These results suggest that the exchanger may be directly regulated in vivo by calmodulin-dependent protein kinase II but not by protein kinase C or cyclic AMP-dependent protein kinase.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning

Related Publications

L Fliegel, and M P Walsh, and D Singh, and C Wong, and A Barr
June 1996, The Journal of biological chemistry,
L Fliegel, and M P Walsh, and D Singh, and C Wong, and A Barr
January 1992, Mineral and electrolyte metabolism,
L Fliegel, and M P Walsh, and D Singh, and C Wong, and A Barr
January 2008, Proceedings of the National Academy of Sciences of the United States of America,
L Fliegel, and M P Walsh, and D Singh, and C Wong, and A Barr
January 1994, Biochemical and biophysical research communications,
L Fliegel, and M P Walsh, and D Singh, and C Wong, and A Barr
September 1997, Biochemical and biophysical research communications,
L Fliegel, and M P Walsh, and D Singh, and C Wong, and A Barr
April 1999, The Journal of biological chemistry,
L Fliegel, and M P Walsh, and D Singh, and C Wong, and A Barr
November 2002, Archives of biochemistry and biophysics,
L Fliegel, and M P Walsh, and D Singh, and C Wong, and A Barr
February 2013, The Journal of biological chemistry,
Copied contents to your clipboard!