Endogenous excitatory amino acids and glutamate receptor subtypes involved in the control of hypothalamic luteinizing hormone-releasing hormone secretion. 1992

F J López, and A O Donoso, and A Negro-Vilar
Reproductive Neuroendocrinology Section, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709.

These studies were designed to evaluate the actions and relative potencies of different endogenous and excitatory amino acid (EAA) selective analogs on EAA-induced neuropeptide secretion as well as to analyze the receptor subtypes involved. For this purpose, different glutamate agonists were tested for their ability to evoke release of the hypothalamic neuropeptide LHRH from arcuate nucleus-median eminence (AN-ME) fragments incubated in vitro. Different glutamate agonists, i.e. 3-amino-3-hydroxy-5-methyl-isoxazole-4-propionic (AMPA), kainic, quisqualic, homocysteic (HCA), quinolinic (QUIN), N-methyl-D-aspartic (NMDA), and pyroglutamic (PYR) acids, elicited LHRH release from AN-ME fragments in vitro. Further evaluation of the range of activity of several of these compounds, both in terms of the dose inducing a half-maximal response and the LHRH-releasing effect at that particular dose, indicated that AMPA greater than HCA greater than QUIN greater than PYR, suggesting that non-NMDA receptors are primarily involved in EAA-induced LHRH release at the level of the AN-ME. Evaluation of the receptor types involved using two specific antagonists for NMDA and non-NMDA receptors, D,L-2-amino-7-phosphoheptanoic acid and 6,7-cyanoquinoxaline-2,3-dione, respectively, showed that the effects of AMPA and HCA on LHRH release can be completely blocked by 6,7-cyanoquinoxaline-2,3-dione, whereas QUIN activity was blocked by D,L-2-amino-7-phosphoheptanoic acid. The effects of PYR on LHRH release were abolished by both receptor blockers. The metabotropic receptor agonist trans-1-amino-cyclopentyl-1,1,3-dicarboxylic acid was not active in eliciting LHRH secretion. The data indicate that endogenous substances active at EAA receptor sites, such as HCA, QUIN, and PYR, can significantly increase the secretion of the neuropeptide LHRH and, thus, may participate in the physiological regulation of the activity of this important neuroendocrine neuronal system. In addition, the results suggest that non-NMDA receptor sites may be preferentially activated at lower ligand concentrations, although NMDA receptors may also be involved in the response to certain endogenous agonists.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007987 Gonadotropin-Releasing Hormone A decapeptide that stimulates the synthesis and secretion of both pituitary gonadotropins, LUTEINIZING HORMONE and FOLLICLE STIMULATING HORMONE. GnRH is produced by neurons in the septum PREOPTIC AREA of the HYPOTHALAMUS and released into the pituitary portal blood, leading to stimulation of GONADOTROPHS in the ANTERIOR PITUITARY GLAND. FSH-Releasing Hormone,GnRH,Gonadoliberin,Gonadorelin,LH-FSH Releasing Hormone,LHRH,Luliberin,Luteinizing Hormone-Releasing Hormone,Cystorelin,Dirigestran,Factrel,Gn-RH,Gonadorelin Acetate,Gonadorelin Hydrochloride,Kryptocur,LFRH,LH-RH,LH-Releasing Hormone,LHFSH Releasing Hormone,LHFSHRH,FSH Releasing Hormone,Gonadotropin Releasing Hormone,LH FSH Releasing Hormone,LH Releasing Hormone,Luteinizing Hormone Releasing Hormone,Releasing Hormone, LHFSH
D008297 Male Males
D011761 Pyrrolidonecarboxylic Acid A cyclized derivative of L-GLUTAMIC ACID. Elevated blood levels may be associated with problems of GLUTAMINE or GLUTATHIONE metabolism. 5-Oxoproline,Pidolic Acid,Pyroglutamic Acid,5-Ketoproline,5-Oxopyrrolidine-2-Carboxylic Acid,Magnesium Pidolate,Pyroglutamate,Pidolate, Magnesium
D011805 Quinolinic Acids Dicarboxylic acids with a PYRIDINE backbone. Quinolinic Acids are downstream products of the KYNURENINE pathway which metabolize amino acid TRYPTOPHAN. Acids, Quinolinic
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D006710 Homocysteine A thiol-containing amino acid formed by a demethylation of METHIONINE. 2-amino-4-mercaptobutyric acid,Homocysteine, L-Isomer,2 amino 4 mercaptobutyric acid,Homocysteine, L Isomer,L-Isomer Homocysteine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate
D017378 Quinolinic Acid A metabolite of tryptophan with a possible role in neurodegenerative disorders. Elevated CSF levels of quinolinic acid are correlated with the severity of neuropsychological deficits in patients who have AIDS. Quinolinate,Quinolinic Acid, Copper(2+) Salt,Quinolinic Acid, Disodium Salt,Quinolinic Acid, Strontium Salt

Related Publications

F J López, and A O Donoso, and A Negro-Vilar
March 2002, Reproductive biology,
F J López, and A O Donoso, and A Negro-Vilar
December 2005, Endocrine,
F J López, and A O Donoso, and A Negro-Vilar
May 1996, Journal of animal science,
F J López, and A O Donoso, and A Negro-Vilar
April 1990, Endocrinologia japonica,
F J López, and A O Donoso, and A Negro-Vilar
September 1984, Journal of medicinal chemistry,
F J López, and A O Donoso, and A Negro-Vilar
December 1987, Endocrinology,
Copied contents to your clipboard!