Characterization of the recombinant human receptor for Escherichia coli heat-stable enterotoxin. 1992

F J de Sauvage, and R Horuk, and G Bennett, and C Quan, and J P Burnier, and D V Goeddel
Department of Molecular Biology, Genentech, Inc., South San Francisco, California 94080.

We report here the molecular characterization of a recombinant cell line (293-STaR) expressing the heat-stable enterotoxin receptor (STaR) from human intestine. We have compared the 293-STaR cell line with the human colonic cell line T84 that endogenously expresses STa binding sites. Scatchard analysis of displacement binding studies revealed a single STa binding site with an affinity (Ki) of 97 pM in 293-STaR compared with 55 pM in T84 cells. Saturation isotherms of STa binding gave a Kd of 94 pM for the cloned receptor expressed in 293 cells and 166 pM for the receptor present in T84 cells. Kinetic measurements of STa binding to 293-STaR gave an association rate constant, K1, of 2.4 x 10(8) M-1 min-1 and a dissociation rate constant, K2, of 0.016 min-1. The half-time of dissociation was 43 min, and the Kd calculated from the ratio of the kinetic constants was 67 pM. The pH profile of STa binding showed that the number of STa binding sites is increased 3-fold at pH 4.0 compared with pH 7.0, with no effect on binding affinity. A polyclonal antibody directed against the extracellular domain of STaR immunoprecipitated two proteins of approximately 140 and 160 kDa from both 293-STaR and T84 cells. Cross-linking of 125I-STa to 293-STaR cells resulted in the labeling of proteins with a molecular mass of approximately 153, 133, 81, 68, 56, and 49 kDa, the two smallest being the more abundant. Similar results have been reported for the STaR present on rat brush border membranes. These data suggest that the STaR-guanylyl cyclase identified by molecular cloning is the only receptor for STa present in T84 cells.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011233 Precipitin Tests Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate. Precipitin Test,Test, Precipitin,Tests, Precipitin
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003106 Colon The segment of LARGE INTESTINE between the CECUM and the RECTUM. It includes the ASCENDING COLON; the TRANSVERSE COLON; the DESCENDING COLON; and the SIGMOID COLON. Appendix Epiploica,Taenia Coli,Omental Appendices,Omental Appendix,Appendices, Omental,Appendix, Omental
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004768 Enterotoxins Substances that are toxic to the intestinal tract causing vomiting, diarrhea, etc.; most common enterotoxins are produced by bacteria. Staphylococcal Enterotoxin,Enterotoxin,Staphylococcal Enterotoxins,Enterotoxin, Staphylococcal,Enterotoxins, Staphylococcal
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006162 Guanylate Cyclase An enzyme that catalyzes the conversion of GTP to 3',5'-cyclic GMP and pyrophosphate. It also acts on ITP and dGTP. (From Enzyme Nomenclature, 1992) EC 4.6.1.2. Guanyl Cyclase,Deoxyguanylate Cyclase,Guanylyl Cyclase,Inosinate Cyclase,Cyclase, Deoxyguanylate,Cyclase, Guanyl,Cyclase, Guanylate,Cyclase, Guanylyl,Cyclase, Inosinate

Related Publications

F J de Sauvage, and R Horuk, and G Bennett, and C Quan, and J P Burnier, and D V Goeddel
November 1984, Infection and immunity,
F J de Sauvage, and R Horuk, and G Bennett, and C Quan, and J P Burnier, and D V Goeddel
January 1986, The Journal of biological chemistry,
F J de Sauvage, and R Horuk, and G Bennett, and C Quan, and J P Burnier, and D V Goeddel
September 1991, Journal of bacteriology,
F J de Sauvage, and R Horuk, and G Bennett, and C Quan, and J P Burnier, and D V Goeddel
September 1991, The Journal of biological chemistry,
F J de Sauvage, and R Horuk, and G Bennett, and C Quan, and J P Burnier, and D V Goeddel
January 1988, Methods in enzymology,
F J de Sauvage, and R Horuk, and G Bennett, and C Quan, and J P Burnier, and D V Goeddel
May 1984, Infection and immunity,
F J de Sauvage, and R Horuk, and G Bennett, and C Quan, and J P Burnier, and D V Goeddel
February 1989, Biochemical and biophysical research communications,
F J de Sauvage, and R Horuk, and G Bennett, and C Quan, and J P Burnier, and D V Goeddel
December 1985, Analytical biochemistry,
F J de Sauvage, and R Horuk, and G Bennett, and C Quan, and J P Burnier, and D V Goeddel
September 1979, Infection and immunity,
F J de Sauvage, and R Horuk, and G Bennett, and C Quan, and J P Burnier, and D V Goeddel
May 1983, Infection and immunity,
Copied contents to your clipboard!