Superoxide generated by glutathione reductase initiates a vanadate-dependent free radical chain oxidation of NADH. 1992

S I Liochev, and I Fridovich
Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710.

Vanadate V(V) markedly stimulated the oxidation of NADPH by GSSG reductase and this oxidation was accompanied by the consumption of O2 and the accumulation of H2O2. Superoxide dismutases completely eliminated this effect of V(V), whereas catalase was without effect, as was exogenous H2O2 added to 0.1 mM. These effects could be seen equally well in phosphate- or in 4-(2-hydroxyethyl)1-piperazineethanesulfonic acid-buffered solutions. Under anaerobic conditions there was no V(V)-stimulated oxidation of NADPH. Approximately 4% of the electrons flowing from NADPH to O2, through GSSG reductase, resulted in release of O2-. The average length of the free radical chains causing the oxidation of NADPH, initiated by O2- plus V(V), was calculated to be in the range 140-200 NADPH oxidized per O2- introduced. We conclude that GSSG reductase, and by extension other O2(-)-producing flavoprotein dehydrogenases such as lipoyl dehydrogenase and ferredoxin reductase, catalyze V(V)-stimulated oxidation of NAD(P)H because they release O2- and because O2- plus V(V) initiate a free radical chain oxidation of NAD(P)H. There is no reason to suppose that these enzymes can act as NAD(P)H:V(V) oxidoreductases.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D005980 Glutathione Reductase Catalyzes the oxidation of GLUTATHIONE to GLUTATHIONE DISULFIDE in the presence of NADP+. Deficiency in the enzyme is associated with HEMOLYTIC ANEMIA. Formerly listed as EC 1.6.4.2. Glutathione-Disulfide Reductase,Reductase, Glutathione,Reductase, Glutathione-Disulfide
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen

Related Publications

S I Liochev, and I Fridovich
August 1984, Archives of biochemistry and biophysics,
S I Liochev, and I Fridovich
April 1992, Molecular and cellular biochemistry,
S I Liochev, and I Fridovich
January 1988, Free radical research communications,
S I Liochev, and I Fridovich
July 1986, The Biochemical journal,
S I Liochev, and I Fridovich
January 1988, Free radical biology & medicine,
S I Liochev, and I Fridovich
January 1985, Archives of biochemistry and biophysics,
Copied contents to your clipboard!