Inhibition of hepatitis B virus production by modified 2',3'-dideoxy-thymidine and 2',3'-dideoxy-5-methylcytidine derivatives. In vitro and in vivo studies. 1992

E Matthes, and M von Janta-Lipinski, and H Will, and H C Schröder, and H Merz, and R Steffen, and W E Müller
Institut für Molekularbiologie, Berlin-Buch, Germany.

The effect of analogues of both 2',3'-dideoxy-3'-fluorothymidine (FddThd) [2',3'-dideoxy-3'-fluorouridine (FddUrd), 2',3'-dideoxy-3'-fluoro-5-chlorouridine (FddClUrd), 2',3'-dideoxy-3'- fluoro-5-bromouridine (FddBrUrd) and 2',3'-dideoxy-3'-fluoro-5-bromovinyluridine (FddBVUrd)] and 2',3'-dideoxy-3'-fluorocytidine (FddCyt) [2',3'-dideoxy-3'-fluoro-5-fluorocytidine (FddFCyt), 2',3'-dideoxy-3'-fluoro-5-chlorocytidine (FddClCyt), 2',3'-dideoxy-3'-fluoro-5-methylcytidine (FddMeCyt), 2',3'-dideoxy-3'-fluoro-5-ethylcytidine (FddEtCyt), 2',3'-dideoxy-3'-chloro-5-methylcytidine (ClddMeCyt), 2',3'-dideoxy-3'-amino-5-methylcytidine (AmddMeCyt), 2',3'-dideoxy-3'-azido-5- methylcytidine (AzddMeCyt) and arabinosyl-5-methylcytosine (AraMeCyt)] were tested for their potential antiviral activity in vitro using the human hepatoblastoma cell line, Hep G2 2.2.15, which was transfected with a vector containing hepatitis B virus (HBV). It was found that FddThd, FddMeCyt, FddEtCyt, ClddMeCyt, AmddMeCyt and AraMeCyt display cytostatic activity at concentrations (CD50 values) between 0.54 (FddMeCyt) and 3.93 microM (FddEtCyt), while FddUrd, FddClUrd, FddBrUrd, FddBVUrd, FddCyt, FddFCyt, FddClCyt and AzddMeCyt do not affect cell growth at concentrations of up to 25 microM. Among the thymidine analogues tested, FddThd is the most effective antiviral agent: at a concentration of 0.03 microM a more than 90% reduction of HBV DNA synthesis was measured. On the other hand, the antiviral indexes displayed by FddClUrd, FddBrUrd and FddBVUrd are higher than tht of FddThd; FddUrd was completely inactive. The most powerful antiviral agents in the group of cytidine analogues tested in vitro were FddMeCyt (more than 90% reduction of HBVDNA synthesis at 0.10 microM) and ClddMeCyt (0.10 microM); FddClCyt, FddEtCyt, AmddMeCyt and AraMeCyt were of intermediate activity. None of the negligible antiviral activity was determined for FddUrd, FddCyt, FddFCyt and AzddMeCyt. FddThd and FddMeCyt displayed in vivo an antiviral effect in the duck/duck HBV (DHBV) animal system. Administration of 10 or 20 mg/kg (total daily dose) of FddThd and 5 or 10 mg/kg of FddMeCyt (i.m. daily) to ducks infected with DHBV for 12 days blocked virus production. Termination of treatment with FddThd of infected animals led to reappearance of the virus in the serum though at lower levels. The in vitro and the in vivo data suggest that FddThd and FddMeCyt might be promising antiviral agents for the treatment of infection caused by HBV in humans.

UI MeSH Term Description Entries
D003841 Deoxycytidine A nucleoside component of DNA composed of CYTOSINE and DEOXYRIBOSE. Cytosine Deoxyribonucleoside,Cytosine Deoxyriboside,Deoxyribonucleoside, Cytosine,Deoxyriboside, Cytosine
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004372 Ducks A water bird in the order Anseriformes (subfamily Anatinae (true ducks)) with a broad blunt bill, short legs, webbed feet, and a waddling gait. Duck
D006515 Hepatitis B virus The type species of the genus ORTHOHEPADNAVIRUS which causes human HEPATITIS B and is also apparently a causal agent in human HEPATOCELLULAR CARCINOMA. The Dane particle is an intact hepatitis virion, named after its discoverer. Non-infectious spherical and tubular particles are also seen in the serum. Dane Particle,Hepatitis Virus, Homologous Serum,B virus, Hepatitis,Hepatitis B viruses,Particle, Dane,viruses, Hepatitis B
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000956 Antigens, Viral Substances elaborated by viruses that have antigenic activity. Viral Antigen,Viral Antigens,Antigen, Viral
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

E Matthes, and M von Janta-Lipinski, and H Will, and H C Schröder, and H Merz, and R Steffen, and W E Müller
January 1998, Antiviral research,
E Matthes, and M von Janta-Lipinski, and H Will, and H C Schröder, and H Merz, and R Steffen, and W E Müller
September 1991, Acta virologica,
E Matthes, and M von Janta-Lipinski, and H Will, and H C Schröder, and H Merz, and R Steffen, and W E Müller
March 1996, Journal of viral hepatitis,
E Matthes, and M von Janta-Lipinski, and H Will, and H C Schröder, and H Merz, and R Steffen, and W E Müller
October 1991, Proceedings of the National Academy of Sciences of the United States of America,
E Matthes, and M von Janta-Lipinski, and H Will, and H C Schröder, and H Merz, and R Steffen, and W E Müller
January 1990, Annals of the New York Academy of Sciences,
E Matthes, and M von Janta-Lipinski, and H Will, and H C Schröder, and H Merz, and R Steffen, and W E Müller
January 1993, Drug metabolism and disposition: the biological fate of chemicals,
E Matthes, and M von Janta-Lipinski, and H Will, and H C Schröder, and H Merz, and R Steffen, and W E Müller
July 1995, Antimicrobial agents and chemotherapy,
E Matthes, and M von Janta-Lipinski, and H Will, and H C Schröder, and H Merz, and R Steffen, and W E Müller
July 1998, Antimicrobial agents and chemotherapy,
E Matthes, and M von Janta-Lipinski, and H Will, and H C Schröder, and H Merz, and R Steffen, and W E Müller
January 1993, Biochemical pharmacology,
E Matthes, and M von Janta-Lipinski, and H Will, and H C Schröder, and H Merz, and R Steffen, and W E Müller
February 1996, Antimicrobial agents and chemotherapy,
Copied contents to your clipboard!