Mg2+ is an essential activator of hydrolytic activity of membrane-bound pyrophosphatase of Rhodospirillum rubrum. 1992

A Sosa, and H Ordaz, and I Romero, and H Celis
Departamento de Bioenergética, Universidad Nacional Autóoma de México, D.F.

The substrate for the hydrolytic activity of membrane-bound pyrophosphatase is the PP(i)-Mg2+ complex. The enzyme has no activity when the free Mg2+ concentration is lower than 10 microM (at 0.5 mM-PP(i)-Mg2+), and therefore free Mg2+ is an essential activator of the hydrolytic activity. The Km for the substrate changes in response to variation in free Mg2+ concentration, from 10.25 to 0.6 mM when free Mg2+ is increased from 0.03 to 1.0 mM respectively. The Km for Mg2+ depends on the substrate concentration: the Km decreases from 0.52 to 0.14 mM from 0.25 to 0.75 mM-PP(i)-Mg2+ respectively. The extrapolated Km for Mg2+ in the absence of the substrate is 0.73 mM. Imidodiphosphate-Mg2+ and free Ca2+ were used as competitive inhibitors of substrate and activator respectively. The equilibrium binding kinetics suggest an ordered mechanism for the activator and the substrate: Mg2+ ions bind the enzyme before PP(i)-Mg2+ in the formation of the catalytic complex, membrane-bound pyrophosphatase-(Mg2+)-(PP(i)-Mg2+).

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D011755 Pyrophosphatases A group of enzymes within the class EC 3.6.1.- that catalyze the hydrolysis of diphosphate bonds, chiefly in nucleoside di- and triphosphates. They may liberate either a mono- or diphosphate. EC 3.6.1.-. Pyrophosphatase
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D012247 Rhodospirillum rubrum Vibrio- to spiral-shaped phototrophic bacteria found in stagnant water and mud exposed to light.
D043564 Inorganic Pyrophosphatase An enzyme which catalyzes the hydrolysis of diphosphate (DIPHOSPHATES) into inorganic phosphate. The hydrolysis of pyrophosphate is coupled to the transport of HYDROGEN IONS across a membrane. Pyrophosphatase, Inorganic,H(+)-PPase,H+-Pyrophosphatase,Proton-Pumping Inorganic Pyrophosphatase,Proton-Translocating Pyrophosphatase,Pyrophosphate-Energized Inorganic Pyrophosphatase,H+ Pyrophosphatase,Inorganic Pyrophosphatase, Proton-Pumping,Inorganic Pyrophosphatase, Pyrophosphate-Energized,Proton Pumping Inorganic Pyrophosphatase,Proton Translocating Pyrophosphatase,Pyrophosphatase, Proton-Pumping Inorganic,Pyrophosphatase, Proton-Translocating,Pyrophosphatase, Pyrophosphate-Energized Inorganic,Pyrophosphate Energized Inorganic Pyrophosphatase
D020130 Bacterial Chromatophores Organelles of phototrophic bacteria which contain photosynthetic pigments and which are formed from an invagination of the cytoplasmic membrane. Chromatophores, Bacterial,Bacterial Chromatophore,Chromatophore, Bacterial

Related Publications

A Sosa, and H Ordaz, and I Romero, and H Celis
December 1992, Journal of bioenergetics and biomembranes,
A Sosa, and H Ordaz, and I Romero, and H Celis
August 1993, Biochemistry and molecular biology international,
A Sosa, and H Ordaz, and I Romero, and H Celis
October 1998, Archives of biochemistry and biophysics,
A Sosa, and H Ordaz, and I Romero, and H Celis
February 1996, European journal of biochemistry,
A Sosa, and H Ordaz, and I Romero, and H Celis
January 1995, Archives of biochemistry and biophysics,
A Sosa, and H Ordaz, and I Romero, and H Celis
December 1979, European journal of biochemistry,
A Sosa, and H Ordaz, and I Romero, and H Celis
June 1972, FEBS letters,
Copied contents to your clipboard!