Supraspinal fiber outgrowth and apparent synaptic remodelling across transected-reconstructed feline spinal cord. 1992

J C de la Torre, and H S Goldsmith
Division of Neurosurgery, University of Ottawa, Faculty of Medicine, Ontario, Canada.

Following complete transection of the spinal cord at T9, 12 cats were separated into two groups: Group 1 received a collagen matrix (CM) treated with a neuroactive agent or with saline to bridge the spinal cord stumps and an omental transposition which was placed on the dorsal surface of the matrix; Group 2 received spinal cord transection only. Two cats received no spinal cord transection. After 90 days, all animals were killed and their brains and spinal cords were removed for immunohistochemical examination. Two weeks prior to sacrifice, spinal cord blood flows (SCBF) were measured and the retrograde axonal tracer Fluoro-Gold was injected below the transection site. Results show that omental transposition to the CM bridge in Group 1 animals increased SCBF an average 59% (assessed by clamping the omental blood supply to the cord). Examination of the brain 90 days after cord transection revealed Fluoro-Gold accumulation in the cytoplasm and processes of neurons located in the brainstem, midbrain, and diencephalic region which are known to contribute pathways to the spinal cord. Immunohistochemical staining with antibodies against the catecholamine synthesizing enzymes tyrosine hydroxylase and dopamine-B-hydroxylase, indicated that only Group I treated cats developed dense bundles of dopaminergic and noradrenergic fibers within the CM bridge and distal spinal cord tissue. These fibers were seen to extend 90 mm below the transection site. In addition, the synaptogenic marker synaptophysin (SYN) was observed in association with dopaminergic and noradrenergic fibers distal to the collagen matrix bridge, an indication that synaptic remodelling (regeneration) by previously denervated supraspinal axons may have occurred. Immunostaining for glial fibrillary acidic protein (GFAP) showed little to none reactive astrocytosis near the transection site of cats treated with the CM and omentum transposition (Group 1). No catecholaminergic fibers or SYN expression below the transection site were observed in Group 2 treated cats. Group 2 treated cats also showed dense immunostaining of GFAP near the transection site indicating significant astrocytic proliferation. These findings indicate that following complete spinal cord transection in cats and reconstruction with a treated collagen matrix and omental transposition, disconnected supraspinal fibers have the ability to regenerate for long anatomic distances and seemingly engage in synaptic remodelling with distal target tissue.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D009852 Omentum A double-layered fold of peritoneum that attaches the STOMACH to other organs in the ABDOMINAL CAVITY. Omentums
D011941 Receptors, Adrenergic Cell-surface proteins that bind epinephrine and/or norepinephrine with high affinity and trigger intracellular changes. The two major classes of adrenergic receptors, alpha and beta, were originally discriminated based on their cellular actions but now are distinguished by their relative affinity for characteristic synthetic ligands. Adrenergic receptors may also be classified according to the subtypes of G-proteins with which they bind; this scheme does not respect the alpha-beta distinction. Adrenergic Receptors,Adrenoceptor,Adrenoceptors,Norepinephrine Receptor,Receptors, Epinephrine,Receptors, Norepinephrine,Adrenergic Receptor,Epinephrine Receptors,Norepinephrine Receptors,Receptor, Adrenergic,Receptor, Norepinephrine
D011954 Receptors, Dopamine Cell-surface proteins that bind dopamine with high affinity and trigger intracellular changes influencing the behavior of cells. Dopamine Receptors,Dopamine Receptor,Receptor, Dopamine
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J C de la Torre, and H S Goldsmith
January 1957, Surgical forum,
J C de la Torre, and H S Goldsmith
February 1981, Journal of neurocytology,
J C de la Torre, and H S Goldsmith
February 1991, Brain research,
J C de la Torre, and H S Goldsmith
January 2009, Journal of rehabilitation research and development,
J C de la Torre, and H S Goldsmith
January 1969, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
J C de la Torre, and H S Goldsmith
March 2008, Journal of medical and dental sciences,
J C de la Torre, and H S Goldsmith
July 2000, Medical hypotheses,
J C de la Torre, and H S Goldsmith
July 1979, Annals of neurology,
J C de la Torre, and H S Goldsmith
February 1979, Annals of neurology,
J C de la Torre, and H S Goldsmith
October 1947, The Journal of comparative neurology,
Copied contents to your clipboard!